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Unit distance graphs in metric spaces

Definition
A unit distance embedding of an undirected graph G = (V ,E)
into a metric space X is an injection i : V → X such that for
some constant c > 0 and for every edge {v ,w} ∈ E, the
distance dist(i(v), i(w)) = c.

Examples:

An equilateral triangle in R2, or a unit (d + 1)-simplex in Rd .
A drawing of a unit (hyper)cube in R2.

Question
Given a metric space X, what is the largest n = κ(X ) such that
the complete graph Kn on n vertices has a unit distance
embedding into X?
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Unit distance complete graphs in Euclidean space

Proposition

κ(Rd ) = d + 1.

Proof.

Fix compatible choices of unit simplices ∆d ⊂ Rd .

By induction on the dimension, we can show that any unit
distance embedding of Kd+1 into Rd must be equivalent by rigid
transformations and scaling to the vertices of ∆d . Specifically,
d of the vertices determine an embedding of Kd into
(d − 1)-dimensional affine subspace, which can be transformed
rigidly onto Rd−1 ⊂ Rd . Apply the induction hypothesis to this
Kd ; the final vertex is then determined up to a reflection.

Finally, there is no point of Rd of unit distance to the vertices
of ∆d , so Kd+2 cannot embed into Rd .
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The metric on projective space

A metric on real or complex projective space may be defined in
terms of the angles between the lines.

Definition

For a pair of lines Cv ,Cw ∈ Pd−1(C) represented by unit
vectors v ,w, the angle between Cv and Cw is

∠(v ,w) = arccos (|〈v ,w〉|) ,

where α is the absolute value of the normalised Hermitian inner
product of v and w.

The distance between v and w is

dist(v ,w) = sin(∠(v ,w)) =

√
1− |〈v ,w〉|2.

A unit distance embedding of a complete graph into a projective
space is also called a set of equiangular lines.
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Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)

κ(Pd−1(R)) ≤ d(d+1)
2 and κ(Pd−1(C)) ≤ d2.

Proof.
Represent elements of projective space by unit column vectors.
The map

v 7→ vv†

sends v to the d × d matrix defining “Hermitian projection onto
Cv ”.

It is an isometric embedding into the trace 1 subspace of
Sym2(Rd ) when v is real, and into the trace 1 subspace of
Herm(Cd ), when v is complex. These subspaces are
isomorphic to R

d(d+1)
2 −1 and Rd2−1, respectively. By the previous

proposition showing κ(Rn) = n + 1, the theorem follows.
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SICs

Definition
A SIC (SIC-POVM; symmetric informationally complete positive
operator-valued measure) is (a generalised quantum
measurement equivalent to) a set of d2 equiangular lines in Cd .
Formally, for a set of equiangular lines
{Cv1, . . . ,Cvd2} ⊂ Pd−1(C), the associated SIC-POVM is the
set of rank 1 Hermitian matrices

{
1
d v1v†1 , . . . ,

1
d vd2v†d2

}
.

Theorem (Delsarte, Goethals, and Seidel, 1975)

For unit vectors {v1, . . . , vd2} defining a SIC,
∣∣〈vi , vj〉

∣∣ = 1√
d+1

for i 6= j .

Conjecture (Zauner, 1999)

SICs exist in every dimension d. That is, κ(Pd−1(C)) = d2.
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Applications and mathematical significance of SICs

SICs have applications to quantum tomography
(reconstructing a quantum state efficiently from a set of
measurements)...

and quantum foundations, specifically the theory of
quantum Bayesianism or QBism.
SICs also arise as maximal equiangular tight frames...
and as minimal complex spherical 2-designs.
SICs (and generalisations thereof) are sometimes called
“line packings” to draw an analogy with sphere packings.
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Results

Form of main result

Stark conjectures
+

Further hypotheses
=⇒ SIC existence

This result is a reduction of:
A problem in frame theory to a problem in number theory.
A problem about complex numbers to a problem about real
numbers.

Caveats:
Valid for prime dimension d ≡ 2 (mod 3) (general d is work
in progress).
“Further hypotheses” are somewhat artificial.
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Results

Alternative form of main result

Conjectural construction of SICs
+

New practical algorithm for constructing SICs using L-functions
(valid in prime dimensions d ≡ 2 (mod 3))

The algorithm is used to give the first construction of an exact
SIC in dimension d = 23.

27



SICs Results (overview) Stark conjectures Heisenberg SICs Results (details)

Results

Alternative form of main result

Conjectural construction of SICs
+

New practical algorithm for constructing SICs using L-functions
(valid in prime dimensions d ≡ 2 (mod 3))

The algorithm is used to give the first construction of an exact
SIC in dimension d = 23.

28



SICs Results (overview) Stark conjectures Heisenberg SICs Results (details)

Ray class groups and ray class fields

Let K be a number field and OK its ring of integers (maximal
order). Let c be a ideal in OK , and let S be a subset of the real
embeddings of K .

Definition (Ray class group modulo c,S)

Clc,S(OK ) =
{fractional ideals of OK coprime to c}

{aOK s.t. a ≡ 1 (mod c) and ρ(a) > 0 for ρ ∈ S}

Class field theory associates to Clc,S(OK ) a ray class field Lc,S,
an abelian extension of K with Galois group
Gal(Lc,S/K ) = Clc,S(OK ). Varying c and S, the ray class fields
are cofinal among all abelian extensions of K .
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Hilbert’s 12 problem and the Stark conjectures

12th problem asks for an “Extension of Kronecker’s
Theorem on Abelian Fields to any Algebraic Realm of
Rationality.”

Kronecker’s Theorem (Kronecker-Weber theorem) says
that the abelian extensions of Q are generated by the
values of e(z) = e2πiz at rational values of z.
Given any base field (“realm of rationality”), Hilbert wanted
“analytic functions” that play the role of e(z).
Harold Stark conjectured in a series of papers
(1971–1980) that exp(cZ ′(1)), for certain linear
combinations Z (s) of Hecke L-functions of K , generate
abelian extensions of K .
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L-functions at s = 1: rational example

The following formula can be proved using calculus. Try it!

Example

1− 1
3
− 1

5
+

1
7

+
1
9
− 1

11
− 1

13
+

1
15

+−−+ · · · =
1√
2

log
(

1 +
√

2
)

The left-hand side is the value L(1, χ), where χ(n) =
(2

n

)
is the

Dirichlet character associated to the field extension Q(
√

2)/Q.
The right-hand side involves ε = 1 +

√
2, the fundamental unit

of Q(
√

2).
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L-functions at s = 1: imaginary quadratic example

The following formula is proved using the theory of complex
multiplication for elliptic curves. The notation e(z) := e2πiz .

Example ∑∑
(m,n)∈Z2\(0,0)

e(m/5)− e(2m/5)

m2 + mn + n2 =
2π√

3
log
(
ε1/5

)

where ε = 29 + 12
√

5 + 2
√

6(65 + 29
√

5).

The left-hand side is a linear combination of Hecke L-values at
s = 1 for Q(

√
−3). The right-hand side involves an algebraic

unit ε in the ray class field modulo (5) for Q(
√
−3).

This example is related to the 5-torsion points of the elliptic
curve y2 = x3 + 1. This elliptic curve has “complex
multiplication by Z[ω]” (ω = −1+

√
−3

2 ), because of the extra
endomorphism (x , y) 7→ (ωx , y).
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L-functions at s = 1: real quadratic example

The following formula is an open conjecture!

Example
∞∑

m=1

∑
n∈Z

− 5
3 m≤n< 5

3 m

e (4m/5)− e (m/5)

3m2 − n2 =
π

i
√

3
log (ε) ,

where ε ≈ 3.890861714 is a root of the polynomial equation

x8 − (8 + 5
√

3)x7 + (53 + 30
√

3)x6 − (156 + 90
√

3)x5

+ (225 + 130
√

3)x4 − (156 + 90
√

3)x3 + (53 + 30
√

3)x2

− (8 + 5
√

3)x + 1 = 0.

The number ε is an algebraic unit in the ray class field of Q(
√

3)
modulo 5∞2. This conjecture is part of the Stark conjectures.
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Zeta functions associated to ray classes

Definition
For A ∈ Clc,S(OK ), the associated zeta function is

ζ(s,A) =
∑
a≤OK
a∈A

N(a)−s.

Let R ∈ Clc,S(OK ) be the ideal class

R = {aOK : a ≡ −1 (mod c) and ρ(a) > 0 for ρ ∈ S}.

Definition
For A ∈ Clc,S(OK ), the associated differenced zeta function is

ZA(s) = ζ(s,A)− ζ(s,RA).
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Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)
Setup:

Let K be a real quadratic number field.

Consider 0 6= c ≤ OK with the property that, if ε ∈ O×K and
ε ≡ 1 (mod c), then one of ε or −ε is totally positive.
Let A be a ray ideal class in Clc∞2 .
Let Hj be the ray class field of K modulo c∞j .
Let ρj be an embedding of Hj that embeds K using the jth
real place.

Then,
(1) Z ′A(0) = log(ρ1(εA)) for a unit εA ∈ H2.
(2) The units εA are compatible with the Artin map

Art : Clc∞1∞2 → Gal(H2/K ). Specifically, εA = εI
Art(A).
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Example

Let K = Q(
√

3), so OK = Z[
√

3], and let c = 5OK .

The ray class group Clc∞2
∼= Z/8Z. Let I be the identity.

We can calculate Z ′I (0) ≈ 1.3586306534 and
exp(Z ′I (0)) ≈ 3.8908617139—apparently the root of a
degree 8 polynomial.

x8 − (8 + 5
√

3)x7 + (53 + 30
√

3)x6 − (156 + 90
√

3)x5

+ (225 + 130
√

3)x4 − (156 + 90
√

3)x3 + (53 + 30
√

3)x2

− (8 + 5
√

3)x + 1 = 0.
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Finding SICs

The equations defining the SIC condition are ≈ d4 quartic
equations in ≈ d2 variables. Groebner basis computation
becomes too difficult for d ≥ 5.

But all known SICs are a group covariant: the orbit Gv of a
single fiducial vector under a finite group G ≤ U(d) with
|G/Z (G)| = d2.
Studying group covariant SICs (for G fixed) reduces the
conditions to ≈ d2 quartic equations in ≈ d variables.
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Heisenberg SICs

All but one of the known SICs are (Weyl-)Heisenberg
(covariant) SICs: The orbit of a single fiducial vector v under

the discrete (Weyl-)Heisenberg group H(d) = 〈ζ
d+1

2
d I,X ,Z 〉;

X =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ; Z =


1 0 0 · · · 0
0 ζd 0 · · · 0
0 0 ζ2

d · · · 0
...

...
...

. . .
...

0 0 0 · · · ζd−1
d

 .

Displacement operators Dm,n = ζ
d+1

2 mn
d X mZ n,

0 ≤ m,n < d , are preferred coset reps of H(d)/〈ζ
d+1

2
d I〉.

Overlap phases of a Heisenberg SIC are
√

d + 1〈v ,Dm,nv〉
with (m,n) 6= (0,0).
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Known results on SIC existence

Refined version of Zauner’s conjecture:

Conjecture (Zauner 1999)
Heisenberg SICs exist in every dimension d.

Zauner’s conjecture is only known for finitely many d .
Exact algebraic solutions in dimensions 1–21, 23, 24, 28,
30, 31, 35, 37, 39, 43, 48, 53, 124, 195, and 323. (Marcus
Grassl reports solutions in 31 additional dimensions!)
Numerical (probable) solutions in every dimension up to
151 and several other dimensions up to 844.
Surprising observation: in known examples, the field of
definition of Heisenberg SICs in dimension d ≥ 4 is an
abelian extension of K = Q(

√
(d + 1)(d − 3)), often a

particular ray class field L(d)∞1
(Appleby, Flammia,

McConnell, and Yard; 2016).
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An observation when d = 5

Observation
For an appropriate choice of fiducial vector, the squares of the
overlap phases (each having multiplicity 3) of a Heisenberg SIC
in dimension d = 5 are the roots of the polynomial

x8 − (8− 5
√

3)x7 + (53− 30
√

3)x6 − (156− 90
√

3)x5

+ (225− 130
√

3)x4 − (156− 90
√

3)x3 + (53− 30
√

3)x2

− (8− 5
√

3)x + 1 = 0.

That is...

the minimal polynomial of a Stark unit of conductor
5∞2 over Q(

√
3), except with

√
3 replaced by −

√
3.

Might this observation generalise? Yes! Squares of overlap
phases are Galois conjugate to powers of Stark units in all the
cases I’ve checked, and this has been made totally explicit in
the case of d an odd prime 2 modulo 3.
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let d ≡ 2 (mod 3) be an odd prime. Let ∆ = (d + 1)(d − 3) and
K = Q(

√
∆). With indices m,n ∈ Z/dZ, let

Am,n = {αOK : α ≡ m + n
√

∆ (mod d) and ρ2(α) > 0} ∈ Cl(d)∞2 .

Then, there is a real algebraic unit α such that the ray class field
L(d)∞2 = K (α) and αm,n := αArt(Am,n) satisfy:

(1) α−m,−n = αm,n
−1.

(2) The αm,n ≡ 1 (mod p) for any prime p|dOL(d)∞2
.

(3) The roots of (d + 1)x2 = αm,n are in L(d)∞2 .

(4) Fix p|dOL(d)∞2
, and let (d + 1)νm,n

2 = αm,n satisfying
νm,n ≡ 1 (mod p). Let ν0,0 = 1. Then, the matrix

M =
1
d

d−1∑
m=0

d−1∑
n=0

νm,nD−m,−n ...is a rank 1 idempotent.
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(4) Fix p|dOL(d)∞2
, and let (d + 1)νm,n

2 = αm,n satisfying
νm,n ≡ 1 (mod p). Let ν0,0 = 1. Then, the matrix

M =
1
d

d−1∑
m=0

d−1∑
n=0

νm,nD−m,−n ...is a rank 1 idempotent.
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Conjectures

Conjecture 2 (K; find special units as Stark units)

A unit α satisfying Conjecture 1 and its Galois conjugates over
K may be constructed as Stark units

αArt(A) = exp
(
Z ′A(0)

)
,

for all A ∈ Cl(d)∞2
.

As before, the differenced ray class zeta function ZA(s) is
defined as

ZA(s) =

(∑
a∈A

N(a)−s

)
−

(∑
a∈RA

N(a)−s

)
,

where R = {aOK : a ≡ −1 (mod d) and ρ2(a) > 0}.
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Results

Theorem (K)

Let d be an odd prime such that d ≡ 2 (mod 3). Assume
Conjecture 1, and let M be the matrix constructed therein. Let
σ ∈ Gal(L(d)∞2

/Q) be any Galois automorphism not fixing K ;
that is, σ(

√
∆) = −

√
∆. Then σ(M) = vv† for a fiducial vector v

of a Heisenberg SIC.

The Stark unit construction of Conjecture 2 works
(numerically) at least for d = 5,11,17, and 23 (d = 53 has
been “spot-checked”).
After finding the corresponding exact units by lattice basis
reduction, we provide the first exact construction of a SIC
in dimension 23.
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Thank you!

Thank you to the organisers!

Kopp, Gene. SICs and the Stark conjectures. Preprint available
at arxiv:1807.05877. To appear in Int. Math. Res. Notices.
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