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Unit distance graphs in metric spaces

Definition

A unit distance embedding of an undirected graph G = (V, E)
into a metric space X is an injection i : V — X such that for
some constant ¢ > 0 and for every edge {v,w} € E, the
distance dist(i(v), i(w)) = c.
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Unit distance graphs in metric spaces

Definition

A unit distance embedding of an undirected graph G = (V, E)
into a metric space X is an injection i : V — X such that for
some constant ¢ > 0 and for every edge {v,w} € E, the
distance dist(i(v), i(w)) = c.

Examples:
@ An equilateral triangle in R?, or a unit (d + 1)-simplex in RY.
@ A drawing of a unit (hyper)cube in R?.

Given a metric space X, what is the largest n = x(X) such that
the complete graph K, on n vertices has a unit distance
embedding into X ?
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w(RY) = d +1.

Fix compatible choices of unit simplices Ay c RY.
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transformations and scaling to the vertices of Ag.
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Unit distance complete graphs in Euclidean space

Proposition
w(RY) = d +1.

Fix compatible choices of unit simplices Ay c RY.

By induction on the dimension, we can show that any unit
distance embedding of Ky, 1 into RY must be equivalent by rigid
transformations and scaling to the vertices of A4. Specifically,
d of the vertices determine an embedding of Ky into
(d — 1)-dimensional affine subspace, which can be transformed
rigidly onto R9~1 ¢ R9. Apply the induction hypothesis to this
Ky; the final vertex is then determined up to a reflection.
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Unit distance complete graphs in Euclidean space

Proposition
w(RY) = d +1.

Fix compatible choices of unit simplices Ay c RY.

By induction on the dimension, we can show that any unit
distance embedding of Ky, 1 into RY must be equivalent by rigid
transformations and scaling to the vertices of A4. Specifically,
d of the vertices determine an embedding of Ky into
(d — 1)-dimensional affine subspace, which can be transformed
rigidly onto R9~1 ¢ R9. Apply the induction hypothesis to this
Ky; the final vertex is then determined up to a reflection.

Finally, there is no point of RY of unit distance to the vertices
of Ay, s0 K442 cannot embed into RY. O
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The metric on projective space

A metric on real or complex projective space may be defined in
terms of the angles between the lines.

Definition

For a pair of lines Cv,Cw € P9~1(C) represented by unit
vectors v, w, the angle between Cv and Cw is

Z(v,w) = arccos (|(v,w)|),

where o is the absolute value of the normalised Hermitian inner
product of v.and w.
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The metric on projective space

A metric on real or complex projective space may be defined in
terms of the angles between the lines.

Definition

For a pair of lines Cv,Cw € P9~1(C) represented by unit
vectors v, w, the angle between Cv and Cw is

Z(v,w) = arccos (|(v,w)|),

where o is the absolute value of the normalised Hermitian inner
product of v.and w. The distance between v and w is

dist(v, w) = sin(£(v, w)) = \/1 — [(v, w)|?.

A unit distance embedding of a complete graph into a projective
space is also called a set of equiangular lines.
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Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)
K(PY1(R)) < 24 ang k(PI-1(C)) < d2.

Represent elements of projective space by unit column vectors.
The map
v wi

sends v to the d x d matrix defining “Hermitian projection onto
Cv.
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Cv”. ltis an isometric embedding into the trace 1 subspace of
Sym?(RY) when v is real, and into the trace 1 subspace of
Herm(CY), when v is complex.
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Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)
K(PY1(R)) < 24 ang k(PI-1(C)) < d2.

Represent elements of projective space by unit column vectors.
The map

Vs vt

sends v to the d x d matrix defining “Hermitian projection onto
Cv”. ltis an isometric embedding into the trace 1 subspace of
Sym?(RY) when v is real, and into the trace 1 subspace of
Herm(CY), when v is complex. These subspaces are

isomorphic to R“Z~1 and R%*~", respectively. By the previous
proposition showing x(R"”) = n+ 1, the theorem follows. O]
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Definition

A SIC (SIC-POVM; symmetric informationally complete positive
operator-valued measure) is (a generalised quantum
measurement equivalent to) a set of d? equiangular lines in C9.
Formally, for a set of equiangular lines

{Cwvy,...,Cvge} Cc PI=1(C), the associated SIC-POVM is the

set of rank 1 Hermitian matrices {%w Vi dvevl }
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A SIC (SIC-POVM; symmetric informationally complete positive
operator-valued measure) is (a generalised quantum
measurement equivalent to) a set of d? equiangular lines in C9.
Formally, for a set of equiangular lines

{Cwvy,...,Cvge} Cc PI=1(C), the associated SIC-POVM is the

set of rank 1 Hermitian matrices {%w Vi dvevl }

Theorem (Delsarte, Goethals, and Seidel, 1975)

For unit vectors { vy, ..., V4 } defining a SIC,
fori # j.

;
(vi, vj)| = Va1
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SICs
A SIC (SIC-POVM; symmetric informationally complete positive
operator-valued measure) is (a generalised quantum
measurement equivalent to) a set of d? equiangular lines in C9.

Formally, for a set of equiangular lines
{Cwvy,...,Cvge} Cc PI=1(C), the associated SIC-POVM is the

set of rank 1 Hermitian matrices {%w Vi dvevl }

Theorem (Delsarte, Goethals, and Seidel, 1975)

For unit vectors {vi,.... v} defining a SIC, |(vi, vj)| = ==
fori # j.

Conjecture (Zauner, 1999)

SICs exist in every dimension d. That is, x(P9~1(C)) = d?.
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Applications and mathematical significance of SICs

@ SICs have applications to quantum tomography
(reconstructing a quantum state efficiently from a set of
measurements)...

@ and quantum foundations, specifically the theory of
quantum Bayesianism or QBism.

@ SICs also arise as maximal equiangular tight frames...
@ and as minimal complex spherical 2-designs.

@ SICs (and generalisations thereof) are sometimes called
“line packings” to draw an analogy with sphere packings.




Results (overview)
o

Form of main result

Stark conjectures
+ = SIC existence
Further hypotheses




Results (overview)
o

Form of main result

Stark conjectures
+ = SIC existence
Further hypotheses

This result is a reduction of:
@ A problem in frame theory to a problem in number theory.

@ A problem about complex numbers to a problem about real
numbers.




Results (overview)
o

Form of main result

Stark conjectures
+ = SIC existence
Further hypotheses

This result is a reduction of:
@ A problem in frame theory to a problem in number theory.

@ A problem about complex numbers to a problem about real
numbers.

Caveats:

@ Valid for prime dimension d = 2 (mod 3) (general d is work
in progress).
@ “Further hypotheses” are somewhat artificial.

DR




Results (overview)
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Alternative form of main result

Conjectural construction of SICs
_|_
New practical algorithm for constructing SICs using L-functions
(valid in prime dimensions d = 2 (mod 3))

<
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Results (overview)
[ ]

Alternative form of main result

Conjectural construction of SICs
_|_
New practical algorithm for constructing SICs using L-functions
(valid in prime dimensions d = 2 (mod 3))

<

The algorithm is used to give the first construction of an exact
SIC in dimension d = 23.
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Ray class groups and ray class fields

Let K be a number field and Ok its ring of integers (maximal
order). Let ¢ be aideal in Ok, and let S be a subset of the real

embeddings of K.

Definition (Ray class group modulo ¢, S)

{fractional ideals of Ok coprime to ¢}

Cle,s(Ok) = {aOk s.t. a=1(mod ¢) and p(a) > 0 for p € S}
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Ray class groups and ray class fields

Let K be a number field and Ok its ring of integers (maximal
order). Let ¢ be aideal in Ok, and let S be a subset of the real
embeddings of K.

Definition (Ray class group modulo ¢, S)

Cl. 5(Ok) = {fractional ideals of Oy coprime to ¢}
S\Uk) = {a0Ok s.t. a=1(mod ¢) and p(a) > 0 forp € S}

Class field theory associates to Cl. s(Ok) a ray class field L, s,
an abelian extension of K with Galois group

Gal(L. s/K) = Cl. s(Ok). Varying c and S, the ray class fields
are cofinal among all abelian extensions of K.
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@ 12th problem asks for an “Extension of Kronecker’s
Theorem on Abelian Fields to any Algebraic Realm of
Rationality.”
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Stark conjectures
Hilbert’s 12 problem and the Stark conjectures

@ 12th problem asks for an “Extension of Kronecker’s
Theorem on Abelian Fields to any Algebraic Realm of
Rationality.”

@ Kronecker's Theorem (Kronecker-Weber theorem) says
that the abelian extensions of Q are generated by the
values of e(z) = €27 at rational values of z.

@ Given any base field (“realm of rationality”), Hilbert wanted
“analytic functions” that play the role of e(z).

@ Harold Stark conjectured in a series of papers
(1971-1980) that exp(cZ’(1)), for certain linear
combinations Z(s) of Hecke L-functions of K, generate
abelian extensions of K.
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L-functions at s = 1: rational example

The following formula can be proved using calculus. Try it!

11 1 1 1 1
+otg— - TgTEt——+ = —=log(1++2)

V2

The left-hand side is the value L(1, x), where x(n) = (2) is the
Dirichlet character associated to the field extension Q(+/2)/Q.
The right-hand side involves ¢ = 1 + v/2, the fundamental unit

of Q(v2).

ot
37579 1




Stark conjectures

L-functions at s = 1: imaginary quadratic example

The following formula is proved using the theory of complex
multiplication for elliptic curves. The notation e(z) := €>7~.

ZZ e(m/5) — e(2m/5) _ z—ﬁlog <€1/5>

2 2
(mmezoo) MO V3

where ¢ = 29 + 12y/5 + 2,/6(65 + 291/5).
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where ¢ = 29 + 12y/5 + 2,/6(65 + 291/5).

The left-hand side is a linear combination of Hecke L-values at
s = 1 for Q(v/—3). The right-hand side involves an algebraic
unit € in the ray class field modulo (5) for Q(v/—3).
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L-functions at s = 1: imaginary quadratic example

The following formula is proved using the theory of complex
multiplication for elliptic curves. The notation e(z) := €>7~.

ZZ e(m/5) — e(2m/5) _ 2i|og< 1/5)

2 2
(mmezoo) MO V3

where ¢ = 29 + 12y/5 + 2,/6(65 + 291/5).

The left-hand side is a linear combination of Hecke L-values at
s = 1 for Q(+/—3). The right-hand side involves an algebraic
unit ¢ in the ray class field modulo (5) for Q(v/-3).

This example is related to the 5-torsion points of the elliptic
curve y2 = x3 +1. This eIIiptic curve has “complex
multiplication by Z[w]” (w = =1%Y=3), because of the extra
endomorphism (x, y) — (wx y).
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L-functions at s = 1: real quadratic example

The following formula is an open conjecture!

= 4m/5) — 5 T
IOEDY elam/s) e (m/ ):wmg(e),

5neZ5
—zm<n<zm

where ¢ =~ 3.890861714 is a root of the polynomial equation
x8 — (8 +5v3)x” + (53 + 30v/3)x® — (156 + 90V/3)x°

+ (225 + 130v/3)x* — (156 + 90v/3)x3 + (53 + 30V/3)x?
—(8+5V3)x+1=0.
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L-functions at s = 1: real quadratic example

The following formula is an open conjecture!

= 4m/5) — 5 T
IOEDY elam/s) e (m/ ):wmg(e),

5neZ5
—zm<n<zm

where ¢ =~ 3.890861714 is a root of the polynomial equation
x8 — (8 +5v3)x” + (53 + 30v/3)x® — (156 + 90V/3)x°

+ (225 + 130v/3)x* — (156 + 90v/3)x3 + (53 + 30V/3)x?
—(8+5V3)x+1=0.

The number ¢ is an algebraic unit in the ray class field of Q(v/3)
modulo 500,. This conjecture is part of the Stark conjectures.
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Definition
For A € Cl; 5s(Ok), the associated zeta function is
((s,A)= > N(a)®.
a<(9K
acA
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Zeta functions associated to ray classes

Definition
For A € Cl; 5s(Ok), the associated zeta function is
((s,A)= > N(a)®.
a<(9K
acA

Let R € Cl, s(Ok) be the ideal class

R ={a0k :a=—1(mod ¢) and p(a) > 0 for p € S}.

Definition
For A € Cl, s(Ok), the associated differenced zeta function is

Za(s) = ((s,A) — ¢(s, RA).
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@ Let K be a real quadratic number field.
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Conjecture (Stark, 1976)

Setup:
@ Let K be a real quadratic number field.

@ Consider 0 # ¢ < Oy with the property that, ife € Og and
e = 1(mod ¢), then one of € or —¢ is totally positive.

@ Let A be a ray ideal class in Cl,.
@ Let H; be the ray class field of K modulo coo;.

@ Let p; be an embedding of H; that embeds K using the jth
real place.

Then,
(1) Z,4(0) =log(p1(ca)) foraunites € Ho.
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Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:
@ Let K be a real quadratic number field.

@ Consider 0 # ¢ < Oy with the property that, ife € Og and
e = 1(mod ¢), then one of € or —¢ is totally positive.

@ Let A be a ray ideal class in Cl,.
@ Let H; be the ray class field of K modulo coo;.

@ Let p; be an embedding of H; that embeds K using the jth
real place.

Then,
(1) Z,4(0) =log(p1(ca)) foraunites € Ho.
(2) The units 4 are compatible with the Artin map
Art : Cleso, 00, — Gal(Ha/K). Specifically, e = £/AMA),

;
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@ Let K = Q(v/3), so Ok = Z[V3], and let ¢ = 50.
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@ Let K = Q(v/3), so Ok = Z[V3], and let ¢ = 50.
@ The ray class group Cl.oo, = Z/8Z. Let I be the identity.
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Stark conjectures
[ ]
Example

@ Let K = Q(v/3), so Ok = Z[V3], and let ¢ = 50.
@ The ray class group Cl.oo, = Z/8Z. Let I be the identity.
@ We can calculate Z/(0) ~ 1.3586306534 and
exp(Z/(0)) ~ 3.8908617139—apparently the root of a
degree 8 polynomial.
x® — (8 +5v3)x” + (53 + 30V/3)x® — (156 + 90V/3)x°
+ (225 + 130v/3)x* — (156 + 90v'3)x3 + (53 + 30V/3)x?
—(8+5V3)x+1=0.

;
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Finding SICs

@ The equations defining the SIC condition are ~ d* quartic
equations in ~ d? variables. Groebner basis computation
becomes too difficult for d > 5.
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becomes too difficult for d > 5.

@ But all known SICs are a group covariant: the orbit Gv of a
single fiducial vector under a finite group G < U(d) with
|IG/Z(G)| = d?.
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Heisenberg SICs
L]
Finding SICs

@ The equations defining the SIC condition are ~ d* quartic
equations in ~ d? variables. Groebner basis computation
becomes too difficult for d > 5.

@ But all known SICs are a group covariant: the orbit Gv of a
single fiducial vector under a finite group G < U(d) with
|IG/Z(G)| = d?.

@ Studying group covariant SICs (for G fixed) reduces the
conditions to ~ d? quartic equations in ~ d variables.

R
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Heisenberg SICs

All but one of the known SICs are (Weyl-)Heisenberg
(covariant) SICs: The orbit of a single fiducial vector v under

d+1
the discrete (Weyl-)Heisenberg group H(d) = <Cd$ 1, X,2);

00 - 01 1.0 0 0
10 --- 00 0 g 0 -~ 0
X=|01 .- 00 z—| 0 0 ¢ 0
00 10 00 0 - ¢§
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Heisenberg SICs

All but one of the known SICs are (Weyl-)Heisenberg
(covariant) SICs: The orbit of a single fiducial vector v under

d+1
the discrete (Weyl-)Heisenberg group H(d) = ((f 1, X,2);

00 - 01 10 0 - 0
10 --- 0 0 (g 0 --- O
X=|01 .- 00 z—| 0 0 ¢ 0
00 10 00 0 - ¢§

d+1
@ Displacement operators Dy p = (,? mxmzn,
d+1
0 < m,n < d, are preferred coset reps of H(d)/((,* /).

@ Overlap phases of a Heisenberg SIC are vd + 1(v, Dy V)
with (m, n) # (0, 0).

[
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Known results on SIC existence

Refined version of Zauner’s conjecture:

Conjecture (Zauner 1999)
Heisenberg SICs exist in every dimension d.
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Refined version of Zauner’s conjecture:

Conjecture (Zauner 1999)
Heisenberg SICs exist in every dimension d.

@ Zauner’s conjecture is only known for finitely many d.

@ Exact algebraic solutions in dimensions 1-21, 23, 24, 28,
30, 31, 35, 37, 39, 43, 48, 53, 124, 195, and 323. (Marcus
Grassl reports solutions in 31 additional dimensions!)
Numerical (probable) solutions in every dimension up to
151 and several other dimensions up to 844.




Heisenberg SICs
[ ]
Known results on SIC existence

Refined version of Zauner’s conjecture:

Conjecture (Zauner 1999)
Heisenberg SICs exist in every dimension d.

@ Zauner’s conjecture is only known for finitely many d.

@ Exact algebraic solutions in dimensions 1-21, 23, 24, 28,
30, 31, 35, 37, 39, 43, 48, 53, 124, 195, and 323. (Marcus
Grassl reports solutions in 31 additional dimensions!)
Numerical (probable) solutions in every dimension up to
151 and several other dimensions up to 844.

@ Surprising observation: in known examples, the field of
definition of Heisenberg SICs in dimension d > 4 is an
abelian extension of K = Q(y/(d + 1)(d — 3)), often a
particular ray class field L), (Appleby, Flammia,
McConnell, and Yard; 2016).




Results (details)
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An observation when d =5

Observation

For an appropriate choice of fiducial vector, the squares of the
overlap phases (each having multiplicity 3) of a Heisenberg SIC
in dimension d = 5 are the roots of the polynomial

x® — (8 — 5v/3)x” + (53 — 30v/3)x® — (156 — 90v/3)x°
+ (225 — 130V3)x* — (156 — 90v/3) x> + (53 — 30v/3)x2
—(8-5V3)x+1=0.

That is...
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An observation when d =5

Observation

For an appropriate choice of fiducial vector, the squares of the
overlap phases (each having multiplicity 3) of a Heisenberg SIC
in dimension d = 5 are the roots of the polynomial
x® — (8 — 5v/3)x” + (53 — 30v/3)x® — (156 — 90v/3)x°
+ (225 — 130V3)x* — (156 — 90v/3) x> + (53 — 30v/3)x2
—(8-5V3)x+1=0.

That is...the minimal polynomial of a Stark unit of conductor
500, over Q(v/3), except with \/3 replaced by —/3.

Might this observation generalise?
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An observation when d =5

Observation

For an appropriate choice of fiducial vector, the squares of the
overlap phases (each having multiplicity 3) of a Heisenberg SIC
in dimension d = 5 are the roots of the polynomial
x® — (8 — 5v/3)x” + (53 — 30v/3)x® — (156 — 90v/3)x°
+ (225 — 130V3)x* — (156 — 90v/3) x> + (53 — 30v/3)x2
—(8-5V3)x+1=0.

That is...the minimal polynomial of a Stark unit of conductor
500, over Q(v/3), except with \/3 replaced by —/3.

Might this observation generalise? Yes! Squares of overlap
phases are Galois conjugate to powers of Stark units in all the
cases I've checked, and this has been made totally explicit in
the case of d an odd prime 2 modulo 3.
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Letd =2 (mod 3) be an odd prime. Let A = (d + 1)(d — 3) and
K = Q(v/A). With indices m,n € Z/dZ, let
Amn = {aOk : a = m+ nVA(mod d) and pa(e) > 0} € Clig)eo, -

Then, there is a real algebraic unit o such that the ray class field
Ligyos, = K() and o := o"An) satisfy:

R/
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Letd =2 (mod 3) be an odd prime. Let A = (d + 1)(d — 3) and
K = Q(v/A). With indices m,n € Z/dZ, let

Amn = {aOk : a = m+ nVA(mod d) and pa(e) > 0} € Clig)eo, -
Then, there is a real algebraic unit o such that the ray class field
Lig)oo, = K(a) @and am p := oAtAnn) satisfy:

(1) &—m,—n = Oém,n_1 .
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)
Letd =2 (mod 3) be an odd prime. Let A = (d + 1)(d — 3) and
K = Q(v/A). With indices m,n € Z/dZ, let

Amn = {aOk : a = m+ nVA(mod d) and pa(e) > 0} € Clig)eo, -

Then, there is a real algebraic unit o such that the ray class field
Ligyos, = K() and o := o"An) satisfy:

(1) &—m,—n = Oém,n_1 .

(2) The am,=1(mod p) for any prime p|dOy_ .
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)
Letd =2 (mod 3) be an odd prime. Let A = (d + 1)(d — 3) and
K = Q(v/A). With indices m,n € Z/dZ, let

Amn = {aOk : a = m+ nVA(mod d) and pa(e) > 0} € Clig)eo, -

Then, there is a real algebraic unit o such that the ray class field
Ligyos, = K() and o := o"An) satisfy:

(1) &—m,—n = Oém,n_1 .

(2) The am,=1(mod p) for any prime p|dOy_ .
(3) The roots of (d + 1)X2 = amn are in Lig)sc, -

y
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Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Letd =2 (mod 3) be an odd prime. Let A = (d + 1)(d — 3) and
K = Q(v/A). With indices m,n € Z/dZ, let
Amn = {aOk : a = m+ nVA(mod d) and pa(e) > 0} € Clig)eo, -

Then, there is a real algebraic unit o such that the ray class field
Ligyos, = K() and o := o"An) satisfy:

(1) &—m,—n = Oém,n_1 .

(2) The amn=1(mod p) for any prime pldOy,.., -
(3) The roots of (d + 1)X2 = amn are in Lig)sc, -
(4) Fixp|dOy,,. and let (d + 1)vmn® = am,n satisfying
vmn = 1(mod p). Letvg o = 1. Then, the matrix
4 9=1d-1
M= >N vmnaD-m_n ...is arank 1 idempotent.

m=0 n=0
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Conjectures

Conjecture 2 (K; find special units as Stark units)

A unit o satisfying Conjecture 1 and its Galois conjugates over
K may be constructed as Stark units

oA = exp (Z4(0)) ,

for all A € Cl(g)oc, -

As before, the differenced ray class zeta function Z4(s) is
defined as

Za(s) = (Z N(a)3> - (Z N(a)8> ,

acA aceRA

where R = {a0Ok : a= —1(mod d) and ps(a) > 0}.

y
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Results

Theorem (K)

Let d be an odd prime such that d = 2 (mod 3). Assume
Conjecture 1, and let M be the matrix constructed therein. Let
o € Gal(L(g)~,/Q) be any Galois automorphism not fixing K;
that is, o(v/A) = —/A. Then o(M) = vwv! for a fiducial vector v
of a Heisenberg SIC.
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Results

Theorem (K)

Let d be an odd prime such that d = 2 (mod 3). Assume
Conjecture 1, and let M be the matrix constructed therein. Let
o € Gal(L(g)~,/Q) be any Galois automorphism not fixing K;
that is, o(v/A) = —/A. Then o(M) = vwv! for a fiducial vector v
of a Heisenberg SIC.

@ The Stark unit construction of Conjecture 2 works
(numerically) at least for d = 5,11,17, and 23 (d = 53 has
been “spot-checked”).
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Results

Theorem (K)

Let d be an odd prime such that d = 2 (mod 3). Assume
Conjecture 1, and let M be the matrix constructed therein. Let
o € Gal(L(g)~,/Q) be any Galois automorphism not fixing K;
that is, o(v/A) = —/A. Then o(M) = vwv! for a fiducial vector v
of a Heisenberg SIC.

@ The Stark unit construction of Conjecture 2 works
(numerically) at least for d = 5,11,17, and 23 (d = 53 has
been “spot-checked”).

@ After finding the corresponding exact units by lattice basis
reduction, we provide the first exact construction of a SIC
in dimension 23.

TS
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LLELLQTIT]

Thank you to the organisers!

Kopp, Gene. SICs and the Stark conjectures. Preprint available
at arxiv:1807.05877. To appear in Int. Math. Res. Notices.
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