

Complex equiangular lines and the Stark conjectures

Gene S Kopp

University of Bristol

Linfoot seminar
University of Bristol
16 October 2019

Unit distance graphs in metric spaces

Definition

A *unit distance embedding* of an undirected graph $G = (V, E)$ into a metric space X is an injection $i : V \rightarrow X$ such that for some constant $c > 0$ and for every edge $\{v, w\} \in E$, the distance $\text{dist}(i(v), i(w)) = c$.

Examples:

Unit distance graphs in metric spaces

Definition

A *unit distance embedding* of an undirected graph $G = (V, E)$ into a metric space X is an injection $i : V \rightarrow X$ such that for some constant $c > 0$ and for every edge $\{v, w\} \in E$, the distance $\text{dist}(i(v), i(w)) = c$.

Examples:

- An equilateral triangle in \mathbb{R}^2 , or a unit $(d + 1)$ -simplex in \mathbb{R}^d .

Unit distance graphs in metric spaces

Definition

A *unit distance embedding* of an undirected graph $G = (V, E)$ into a metric space X is an injection $i : V \rightarrow X$ such that for some constant $c > 0$ and for every edge $\{v, w\} \in E$, the distance $\text{dist}(i(v), i(w)) = c$.

Examples:

- An equilateral triangle in \mathbb{R}^2 , or a unit $(d + 1)$ -simplex in \mathbb{R}^d .
- A drawing of a unit (hyper)cube in \mathbb{R}^2 .

Unit distance graphs in metric spaces

Definition

A *unit distance embedding* of an undirected graph $G = (V, E)$ into a metric space X is an injection $i : V \rightarrow X$ such that for some constant $c > 0$ and for every edge $\{v, w\} \in E$, the distance $\text{dist}(i(v), i(w)) = c$.

Examples:

- An equilateral triangle in \mathbb{R}^2 , or a unit $(d + 1)$ -simplex in \mathbb{R}^d .
- A drawing of a unit (hyper)cube in \mathbb{R}^2 .

Question

Given a metric space X , what is the largest $n = \kappa(X)$ such that the complete graph K_n on n vertices has a unit distance embedding into X ?

Unit distance complete graphs in Euclidean space

Proposition

$$\kappa(\mathbb{R}^d) = d + 1.$$

Proof.

Fix compatible choices of unit simplices $\Delta_d \subset \mathbb{R}^d$.

Unit distance complete graphs in Euclidean space

Proposition

$$\kappa(\mathbb{R}^d) = d + 1.$$

Proof.

Fix compatible choices of unit simplices $\Delta_d \subset \mathbb{R}^d$.

By induction on the dimension, we can show that any unit distance embedding of K_{d+1} into \mathbb{R}^d must be equivalent by rigid transformations and scaling to the vertices of Δ_d .

Unit distance complete graphs in Euclidean space

Proposition

$$\kappa(\mathbb{R}^d) = d + 1.$$

Proof.

Fix compatible choices of unit simplices $\Delta_d \subset \mathbb{R}^d$.

By induction on the dimension, we can show that any unit distance embedding of K_{d+1} into \mathbb{R}^d must be equivalent by rigid transformations and scaling to the vertices of Δ_d . Specifically, d of the vertices determine an embedding of K_d into $(d - 1)$ -dimensional affine subspace, which can be transformed rigidly onto $\mathbb{R}^{d-1} \subset \mathbb{R}^d$. Apply the induction hypothesis to this K_d ; the final vertex is then determined up to a reflection.

Unit distance complete graphs in Euclidean space

Proposition

$$\kappa(\mathbb{R}^d) = d + 1.$$

Proof.

Fix compatible choices of unit simplices $\Delta_d \subset \mathbb{R}^d$.

By induction on the dimension, we can show that any unit distance embedding of K_{d+1} into \mathbb{R}^d must be equivalent by rigid transformations and scaling to the vertices of Δ_d . Specifically, d of the vertices determine an embedding of K_d into $(d - 1)$ -dimensional affine subspace, which can be transformed rigidly onto $\mathbb{R}^{d-1} \subset \mathbb{R}^d$. Apply the induction hypothesis to this K_d ; the final vertex is then determined up to a reflection.

Finally, there is no point of \mathbb{R}^d of unit distance to the vertices of Δ_d , so K_{d+2} cannot embed into \mathbb{R}^d . □

The metric on projective space

A metric on real or complex projective space may be defined in terms of the angles between the lines.

Definition

For a pair of lines $\mathbb{C}v, \mathbb{C}w \in \mathbb{P}^{d-1}(\mathbb{C})$ represented by unit vectors v, w , the **angle** between $\mathbb{C}v$ and $\mathbb{C}w$ is

$$\angle(v, w) = \arccos(|\langle v, w \rangle|),$$

where α is the absolute value of the normalised Hermitian inner product of v and w .

The metric on projective space

A metric on real or complex projective space may be defined in terms of the angles between the lines.

Definition

For a pair of lines $\mathbb{C}v, \mathbb{C}w \in \mathbb{P}^{d-1}(\mathbb{C})$ represented by unit vectors v, w , the **angle** between $\mathbb{C}v$ and $\mathbb{C}w$ is

$$\angle(v, w) = \arccos(|\langle v, w \rangle|),$$

where α is the absolute value of the normalised Hermitian inner product of v and w . The **distance** between v and w is

$$\text{dist}(v, w) = \sin(\angle(v, w)) = \sqrt{1 - |\langle v, w \rangle|^2}.$$

The metric on projective space

A metric on real or complex projective space may be defined in terms of the angles between the lines.

Definition

For a pair of lines $\mathbb{C}v, \mathbb{C}w \in \mathbb{P}^{d-1}(\mathbb{C})$ represented by unit vectors v, w , the **angle** between $\mathbb{C}v$ and $\mathbb{C}w$ is

$$\angle(v, w) = \arccos(|\langle v, w \rangle|),$$

where α is the absolute value of the normalised Hermitian inner product of v and w . The **distance** between v and w is

$$\text{dist}(v, w) = \sin(\angle(v, w)) = \sqrt{1 - |\langle v, w \rangle|^2}.$$

A unit distance embedding of a complete graph into a projective space is also called a **set of equiangular lines**.

Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)

$$\kappa(\mathbb{P}^{d-1}(\mathbb{R})) \leq \frac{d(d+1)}{2} \text{ and } \kappa(\mathbb{P}^{d-1}(\mathbb{C})) \leq d^2.$$

Proof.

Represent elements of projective space by unit column vectors.
The map

$$v \mapsto vv^\dagger$$

sends v to the $d \times d$ matrix defining “Hermitian projection onto $\mathbb{C}v$ ”.

Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)

$$\kappa(\mathbb{P}^{d-1}(\mathbb{R})) \leq \frac{d(d+1)}{2} \text{ and } \kappa(\mathbb{P}^{d-1}(\mathbb{C})) \leq d^2.$$

Proof.

Represent elements of projective space by unit column vectors.
The map

$$v \mapsto vv^\dagger$$

sends v to the $d \times d$ matrix defining “Hermitian projection onto $\mathbb{C}v$ ”. It is an isometric embedding into the trace 1 subspace of $\text{Sym}^2(\mathbb{R}^d)$ when v is real, and into the trace 1 subspace of $\text{Herm}(\mathbb{C}^d)$, when v is complex.

Unit distance complete graphs in projective spaces

Theorem (Delsarte, Goethals, and Seidel, 1975)

$$\kappa(\mathbb{P}^{d-1}(\mathbb{R})) \leq \frac{d(d+1)}{2} \text{ and } \kappa(\mathbb{P}^{d-1}(\mathbb{C})) \leq d^2.$$

Proof.

Represent elements of projective space by unit column vectors.
The map

$$v \mapsto vv^\dagger$$

sends v to the $d \times d$ matrix defining “Hermitian projection onto $\mathbb{C}v$ ”. It is an isometric embedding into the trace 1 subspace of $\text{Sym}^2(\mathbb{R}^d)$ when v is real, and into the trace 1 subspace of $\text{Herm}(\mathbb{C}^d)$, when v is complex. These subspaces are isomorphic to $\mathbb{R}^{\frac{d(d+1)}{2}-1}$ and \mathbb{R}^{d^2-1} , respectively. By the previous proposition showing $\kappa(\mathbb{R}^n) = n + 1$, the theorem follows. □

SICs

Definition

A *SIC (SIC-POVM; symmetric informationally complete positive operator-valued measure)* is (a generalised quantum measurement equivalent to) a set of d^2 equiangular lines in \mathbb{C}^d . Formally, for a set of equiangular lines $\{\mathbb{C}v_1, \dots, \mathbb{C}v_{d^2}\} \subset \mathbb{P}^{d-1}(\mathbb{C})$, the associated SIC-POVM is the set of rank 1 Hermitian matrices $\left\{ \frac{1}{d} v_1 v_1^\dagger, \dots, \frac{1}{d} v_{d^2} v_{d^2}^\dagger \right\}$.

SICs

Definition

A *SIC (SIC-POVM; symmetric informationally complete positive operator-valued measure)* is (a generalised quantum measurement equivalent to) a set of d^2 equiangular lines in \mathbb{C}^d . Formally, for a set of equiangular lines $\{\mathbb{C}v_1, \dots, \mathbb{C}v_{d^2}\} \subset \mathbb{P}^{d-1}(\mathbb{C})$, the associated SIC-POVM is the set of rank 1 Hermitian matrices $\left\{ \frac{1}{d} v_1 v_1^\dagger, \dots, \frac{1}{d} v_{d^2} v_{d^2}^\dagger \right\}$.

Theorem (Delsarte, Goethals, and Seidel, 1975)

For unit vectors $\{v_1, \dots, v_{d^2}\}$ defining a SIC, $|\langle v_i, v_j \rangle| = \frac{1}{\sqrt{d+1}}$ for $i \neq j$.

SICs

Definition

A *SIC (SIC-POVM; symmetric informationally complete positive operator-valued measure)* is (a generalised quantum measurement equivalent to) a set of d^2 equiangular lines in \mathbb{C}^d . Formally, for a set of equiangular lines $\{\mathbb{C}v_1, \dots, \mathbb{C}v_{d^2}\} \subset \mathbb{P}^{d-1}(\mathbb{C})$, the associated SIC-POVM is the set of rank 1 Hermitian matrices $\left\{ \frac{1}{d} v_1 v_1^\dagger, \dots, \frac{1}{d} v_{d^2} v_{d^2}^\dagger \right\}$.

Theorem (Delsarte, Goethals, and Seidel, 1975)

For unit vectors $\{v_1, \dots, v_{d^2}\}$ defining a SIC, $|\langle v_i, v_j \rangle| = \frac{1}{\sqrt{d+1}}$ for $i \neq j$.

Conjecture (Zauner, 1999)

SICs exist in every dimension d . That is, $\kappa(\mathbb{P}^{d-1}(\mathbb{C})) = d^2$.

Applications and mathematical significance of SICs

- SICs have applications to **quantum tomography** (reconstructing a quantum state efficiently from a set of measurements)...

Applications and mathematical significance of SICs

- SICs have applications to **quantum tomography** (reconstructing a quantum state efficiently from a set of measurements)...
- and quantum foundations, specifically the theory of quantum Bayesianism or **QBism**.

Applications and mathematical significance of SICs

- SICs have applications to **quantum tomography** (reconstructing a quantum state efficiently from a set of measurements)...
- and quantum foundations, specifically the theory of quantum Bayesianism or **QBism**.
- SICs also arise as **maximal equiangular tight frames**...

Applications and mathematical significance of SICs

- SICs have applications to **quantum tomography** (reconstructing a quantum state efficiently from a set of measurements)...
- and quantum foundations, specifically the theory of quantum Bayesianism or **QBism**.
- SICs also arise as **maximal equiangular tight frames**...
- and as **minimal complex spherical 2-designs**.

Applications and mathematical significance of SICs

- SICs have applications to **quantum tomography** (reconstructing a quantum state efficiently from a set of measurements)...
- and quantum foundations, specifically the theory of quantum Bayesianism or **QBism**.
- SICs also arise as **maximal equiangular tight frames**...
- and as **minimal complex spherical 2-designs**.
- SICs (and generalisations thereof) are sometimes called “line packings” to draw an analogy with sphere packings.

Results

Form of main result

Stark conjectures

+

⇒ SIC existence

Further hypotheses

Results

Form of main result

$$\begin{array}{c} \text{Stark conjectures} \\ + \\ \text{Further hypotheses} \end{array} \implies \text{SIC existence}$$

This result is a reduction of:

- A problem in **frame theory** to a problem in **number theory**.
- A problem about **complex numbers** to a problem about **real numbers**.

Results

Form of main result

$$\begin{matrix} \text{Stark conjectures} \\ + \\ \text{Further hypotheses} \end{matrix} \implies \text{SIC existence}$$

This result is a reduction of:

- A problem in **frame theory** to a problem in **number theory**.
- A problem about **complex numbers** to a problem about **real numbers**.

Caveats:

- Valid for prime dimension $d \equiv 2 \pmod{3}$ (general d is work in progress).
- “Further hypotheses” are somewhat artificial.

Results

Alternative form of main result

Conjectural construction of SICs

+

New practical algorithm for constructing SICs using L -functions
(valid in prime dimensions $d \equiv 2 \pmod{3}$)

Results

Alternative form of main result

Conjectural construction of SICs

+

New practical algorithm for constructing SICs using L -functions
(valid in prime dimensions $d \equiv 2 \pmod{3}$)

The algorithm is used to give the first construction of an exact SIC in dimension $d = 23$.

Ray class groups and ray class fields

Let K be a number field and \mathcal{O}_K its ring of integers (maximal order). Let \mathfrak{c} be a ideal in \mathcal{O}_K , and let S be a subset of the real embeddings of K .

Definition (Ray class group modulo \mathfrak{c}, S)

$$\text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K) = \frac{\{ \text{fractional ideals of } \mathcal{O}_K \text{ coprime to } \mathfrak{c} \}}{\{ a\mathcal{O}_K \text{ s.t. } a \equiv 1 \pmod{\mathfrak{c}} \text{ and } \rho(a) > 0 \text{ for } \rho \in S \}}$$

Ray class groups and ray class fields

Let K be a number field and \mathcal{O}_K its ring of integers (maximal order). Let \mathfrak{c} be a ideal in \mathcal{O}_K , and let S be a subset of the real embeddings of K .

Definition (Ray class group modulo \mathfrak{c}, S)

$$\text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K) = \frac{\{\text{fractional ideals of } \mathcal{O}_K \text{ coprime to } \mathfrak{c}\}}{\{a\mathcal{O}_K \text{ s.t. } a \equiv 1 \pmod{\mathfrak{c}} \text{ and } \rho(a) > 0 \text{ for } \rho \in S\}}$$

Class field theory associates to $\text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$ a **ray class field** $L_{\mathfrak{c}, S}$, an abelian extension of K with Galois group $\text{Gal}(L_{\mathfrak{c}, S}/K) = \text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$. Varying \mathfrak{c} and S , the ray class fields are cofinal among all abelian extensions of K .

Hilbert's 12 problem and the Stark conjectures

- 12th problem asks for an “Extension of Kronecker’s Theorem on Abelian Fields to any Algebraic Realm of Rationality.”

Hilbert's 12 problem and the Stark conjectures

- 12th problem asks for an “Extension of Kronecker’s Theorem on Abelian Fields to any Algebraic Realm of Rationality.”
- Kronecker’s Theorem (Kronecker-Weber theorem) says that the abelian extensions of \mathbb{Q} are generated by the values of $e(z) = e^{2\pi iz}$ at rational values of z .

Hilbert's 12 problem and the Stark conjectures

- 12th problem asks for an “Extension of Kronecker’s Theorem on Abelian Fields to any Algebraic Realm of Rationality.”
- Kronecker’s Theorem (Kronecker-Weber theorem) says that the abelian extensions of \mathbb{Q} are generated by the values of $e(z) = e^{2\pi iz}$ at rational values of z .
- Given any base field (“realm of rationality”), Hilbert wanted “analytic functions” that play the role of $e(z)$.

Hilbert's 12 problem and the Stark conjectures

- 12th problem asks for an “Extension of Kronecker’s Theorem on Abelian Fields to any Algebraic Realm of Rationality.”
- Kronecker’s Theorem (Kronecker-Weber theorem) says that the abelian extensions of \mathbb{Q} are generated by the values of $e(z) = e^{2\pi iz}$ at rational values of z .
- Given any base field (“realm of rationality”), Hilbert wanted “analytic functions” that play the role of $e(z)$.
- Harold Stark conjectured in a series of papers (1971–1980) that $\exp(cZ'(1))$, for certain linear combinations $Z(s)$ of Hecke L -functions of K , generate abelian extensions of K .

L-functions at $s = 1$: rational example

The following formula can be proved using calculus. Try it!

Example

$$1 - \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{9} - \frac{1}{11} - \frac{1}{13} + \frac{1}{15} + \dots + \dots = \frac{1}{\sqrt{2}} \log(1 + \sqrt{2})$$

L -functions at $s = 1$: rational example

The following formula can be proved using calculus. Try it!

Example

$$1 - \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{9} - \frac{1}{11} - \frac{1}{13} + \frac{1}{15} + \dots + \dots = \frac{1}{\sqrt{2}} \log(1 + \sqrt{2})$$

The left-hand side is the value $L(1, \chi)$, where $\chi(n) = (\frac{2}{n})$ is the Dirichlet character associated to the field extension $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$. The right-hand side involves $\varepsilon = 1 + \sqrt{2}$, the fundamental unit of $\mathbb{Q}(\sqrt{2})$.

L -functions at $s = 1$: imaginary quadratic example

The following formula is proved using the theory of complex multiplication for elliptic curves. The notation $e(z) := e^{2\pi iz}$.

Example

$$\sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{e(m/5) - e(2m/5)}{m^2 + mn + n^2} = \frac{2\pi}{\sqrt{3}} \log \left(\varepsilon^{1/5} \right)$$

where $\varepsilon = 29 + 12\sqrt{5} + 2\sqrt{6(65 + 29\sqrt{5})}$.

L-functions at $s = 1$: imaginary quadratic example

The following formula is proved using the theory of complex multiplication for elliptic curves. The notation $e(z) := e^{2\pi iz}$.

Example

$$\sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{e(m/5) - e(2m/5)}{m^2 + mn + n^2} = \frac{2\pi}{\sqrt{3}} \log \left(\varepsilon^{1/5} \right)$$

$$\text{where } \varepsilon = 29 + 12\sqrt{5} + 2\sqrt{6(65 + 29\sqrt{5})}.$$

The left-hand side is a linear combination of Hecke L-values at $s = 1$ for $\mathbb{Q}(\sqrt{-3})$. The right-hand side involves an algebraic unit ε in the ray class field modulo (5) for $\mathbb{Q}(\sqrt{-3})$.

L-functions at $s = 1$: imaginary quadratic example

The following formula is proved using the theory of complex multiplication for elliptic curves. The notation $e(z) := e^{2\pi iz}$.

Example

$$\sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{e(m/5) - e(2m/5)}{m^2 + mn + n^2} = \frac{2\pi}{\sqrt{3}} \log \left(\varepsilon^{1/5} \right)$$

where $\varepsilon = 29 + 12\sqrt{5} + 2\sqrt{6(65 + 29\sqrt{5})}$.

The left-hand side is a linear combination of Hecke L-values at $s = 1$ for $\mathbb{Q}(\sqrt{-3})$. The right-hand side involves an algebraic unit ε in the ray class field modulo (5) for $\mathbb{Q}(\sqrt{-3})$.

This example is related to the 5-torsion points of the elliptic curve $y^2 = x^3 + 1$. This elliptic curve has “complex multiplication by $\mathbb{Z}[\omega]$ ” ($\omega = \frac{-1 + \sqrt{-3}}{2}$), because of the extra endomorphism $(x, y) \mapsto (\omega x, y)$.

L-functions at $s = 1$: real quadratic example

The following formula is an open conjecture!

Example

$$\sum_{m=1}^{\infty} \sum_{\substack{n \in \mathbb{Z} \\ -\frac{5}{3}m \leq n < \frac{5}{3}m}} \frac{e(4m/5) - e(m/5)}{3m^2 - n^2} = \frac{\pi}{i\sqrt{3}} \log(\varepsilon),$$

where $\varepsilon \approx 3.890861714$ is a root of the polynomial equation

$$\begin{aligned} x^8 - (8 + 5\sqrt{3})x^7 + (53 + 30\sqrt{3})x^6 - (156 + 90\sqrt{3})x^5 \\ + (225 + 130\sqrt{3})x^4 - (156 + 90\sqrt{3})x^3 + (53 + 30\sqrt{3})x^2 \\ - (8 + 5\sqrt{3})x + 1 = 0. \end{aligned}$$

L -functions at $s = 1$: real quadratic example

The following formula is an open conjecture!

Example

$$\sum_{m=1}^{\infty} \sum_{\substack{n \in \mathbb{Z} \\ -\frac{5}{3}m \leq n < \frac{5}{3}m}} \frac{e(4m/5) - e(m/5)}{3m^2 - n^2} = \frac{\pi}{i\sqrt{3}} \log(\varepsilon),$$

where $\varepsilon \approx 3.890861714$ is a root of the polynomial equation

$$\begin{aligned} x^8 - (8 + 5\sqrt{3})x^7 + (53 + 30\sqrt{3})x^6 - (156 + 90\sqrt{3})x^5 \\ + (225 + 130\sqrt{3})x^4 - (156 + 90\sqrt{3})x^3 + (53 + 30\sqrt{3})x^2 \\ - (8 + 5\sqrt{3})x + 1 = 0. \end{aligned}$$

The number ε is an algebraic unit in the ray class field of $\mathbb{Q}(\sqrt{3})$ modulo $5\infty_2$. This conjecture is part of the Stark conjectures.

Zeta functions associated to ray classes

Definition

For $A \in \text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$, the associated zeta function is

$$\zeta(s, A) = \sum_{\substack{\mathfrak{a} \leq \mathcal{O}_K \\ \mathfrak{a} \in A}} N(\mathfrak{a})^{-s}.$$

Zeta functions associated to ray classes

Definition

For $A \in \text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$, the associated zeta function is

$$\zeta(s, A) = \sum_{\substack{\mathfrak{a} \leq \mathcal{O}_K \\ \mathfrak{a} \in A}} N(\mathfrak{a})^{-s}.$$

Let $R \in \text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$ be the ideal class

$$R = \{a\mathcal{O}_K : a \equiv -1 \pmod{\mathfrak{c}} \text{ and } \rho(a) > 0 \text{ for } \rho \in S\}.$$

Definition

For $A \in \text{Cl}_{\mathfrak{c}, S}(\mathcal{O}_K)$, the associated differenced zeta function is

$$Z_A(s) = \zeta(s, A) - \zeta(s, RA).$$

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- *Let K be a real quadratic number field.*

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.
- Let A be a ray ideal class in $\text{Cl}_{\mathfrak{c}\infty_2}$.

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.
- Let A be a ray ideal class in $\text{Cl}_{\mathfrak{c}\infty_2}$.
- Let H_j be the ray class field of K modulo $\mathfrak{c}\infty_j$.

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.
- Let A be a ray ideal class in $\text{Cl}_{\mathfrak{c}\infty_2}$.
- Let H_j be the ray class field of K modulo $\mathfrak{c}\infty_j$.
- Let ρ_j be an embedding of H_j that embeds K using the j th real place.

Then,

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.
- Let A be a ray ideal class in $\text{Cl}_{\mathfrak{c}\infty_2}$.
- Let H_j be the ray class field of K modulo $\mathfrak{c}\infty_j$.
- Let ρ_j be an embedding of H_j that embeds K using the j th real place.

Then,

$$(1) \quad Z'_A(0) = \log(\rho_1(\varepsilon_A)) \text{ for a unit } \varepsilon_A \in H_2.$$

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976)

Setup:

- Let K be a real quadratic number field.
- Consider $0 \neq \mathfrak{c} \leq \mathcal{O}_K$ with the property that, if $\varepsilon \in \mathcal{O}_K^\times$ and $\varepsilon \equiv 1 \pmod{\mathfrak{c}}$, then one of ε or $-\varepsilon$ is totally positive.
- Let A be a ray ideal class in $\text{Cl}_{\mathfrak{c}\infty_2}$.
- Let H_j be the ray class field of K modulo $\mathfrak{c}\infty_j$.
- Let ρ_j be an embedding of H_j that embeds K using the j th real place.

Then,

- (1) $Z'_A(0) = \log(\rho_1(\varepsilon_A))$ for a unit $\varepsilon_A \in H_2$.
- (2) The units ε_A are compatible with the Artin map
 $\text{Art} : \text{Cl}_{\mathfrak{c}\infty_1\infty_2} \rightarrow \text{Gal}(H_2/K)$. Specifically, $\varepsilon_A = \varepsilon_I^{\text{Art}(A)}$.

Example

- Let $K = \mathbb{Q}(\sqrt{3})$, so $\mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$, and let $\mathfrak{c} = 5\mathcal{O}_K$.

Example

- Let $K = \mathbb{Q}(\sqrt{3})$, so $\mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$, and let $\mathfrak{c} = 5\mathcal{O}_K$.
- The ray class group $\text{Cl}_{\mathfrak{c}\infty_2} \cong \mathbb{Z}/8\mathbb{Z}$. Let I be the identity.

Example

- Let $K = \mathbb{Q}(\sqrt{3})$, so $\mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$, and let $\mathfrak{c} = 5\mathcal{O}_K$.
- The ray class group $\text{Cl}_{\mathfrak{c}\infty_2} \cong \mathbb{Z}/8\mathbb{Z}$. Let I be the identity.
- We can calculate $Z'_I(0) \approx 1.3586306534$ and $\exp(Z'_I(0)) \approx 3.8908617139$ —apparently the root of a degree 8 polynomial.

$$\begin{aligned}x^8 - (8 + 5\sqrt{3})x^7 + (53 + 30\sqrt{3})x^6 - (156 + 90\sqrt{3})x^5 \\+ (225 + 130\sqrt{3})x^4 - (156 + 90\sqrt{3})x^3 + (53 + 30\sqrt{3})x^2 \\- (8 + 5\sqrt{3})x + 1 = 0.\end{aligned}$$

Finding SICs

- The equations defining the SIC condition are $\approx d^4$ quartic equations in $\approx d^2$ variables. Groebner basis computation becomes too difficult for $d \geq 5$.

Finding SICs

- The equations defining the SIC condition are $\approx d^4$ quartic equations in $\approx d^2$ variables. Groebner basis computation becomes too difficult for $d \geq 5$.
- But all known SICs are a **group covariant**: the orbit Gv of a single **fiducial vector** under a finite group $G \leq U(d)$ with $|G/Z(G)| = d^2$.

Finding SICs

- The equations defining the SIC condition are $\approx d^4$ quartic equations in $\approx d^2$ variables. Groebner basis computation becomes too difficult for $d \geq 5$.
- But all known SICs are a **group covariant**: the orbit Gv of a single **fiducial vector** under a finite group $G \leq U(d)$ with $|G/Z(G)| = d^2$.
- Studying group covariant SICs (for G fixed) reduces the conditions to $\approx d^2$ quartic equations in $\approx d$ variables.

Heisenberg SICs

All but one of the known SICs are **(Weyl-)Heisenberg covariant SICs**: The orbit of a single **fiducial vector** v under the discrete (Weyl-)Heisenberg group $H(d) = \langle \zeta_d^{\frac{d+1}{2}} I, X, Z \rangle$;

$$X = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}; \quad Z = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \zeta_d & 0 & \cdots & 0 \\ 0 & 0 & \zeta_d^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \zeta_d^{d-1} \end{pmatrix}.$$

Heisenberg SICs

All but one of the known SICs are **(Weyl-)Heisenberg covariant SICs**: The orbit of a single **fiducial vector** v under the discrete (Weyl-)Heisenberg group $H(d) = \langle \zeta_d^{\frac{d+1}{2}} I, X, Z \rangle$;

$$X = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}; \quad Z = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \zeta_d & 0 & \cdots & 0 \\ 0 & 0 & \zeta_d^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \zeta_d^{d-1} \end{pmatrix}.$$

- **Displacement operators** $D_{m,n} = \zeta_d^{\frac{d+1}{2}mn} X^m Z^n$, $0 \leq m, n < d$, are preferred coset reps of $H(d)/\langle \zeta_d^{\frac{d+1}{2}} I \rangle$.
- **Overlap phases** of a Heisenberg SIC are $\sqrt{d+1} \langle v, D_{m,n} v \rangle$ with $(m, n) \neq (0, 0)$.

Known results on SIC existence

Refined version of Zauner's conjecture:

Conjecture (Zauner 1999)

Heisenberg SICs exist in every dimension d .

Known results on SIC existence

Refined version of Zauner's conjecture:

Conjecture (Zauner 1999)

Heisenberg SICs exist in every dimension d .

- Zauner's conjecture is only known for finitely many d .

Known results on SIC existence

Refined version of Zauner's conjecture:

Conjecture (Zauner 1999)

Heisenberg SICs exist in every dimension d .

- Zauner's conjecture is only known for finitely many d .
- Exact algebraic solutions in dimensions 1–21, 23, 24, 28, 30, 31, 35, 37, 39, 43, 48, 53, 124, 195, and 323. (Marcus Grassl reports solutions in 31 additional dimensions!) Numerical (probable) solutions in every dimension up to 151 and several other dimensions up to 844.

Known results on SIC existence

Refined version of Zauner's conjecture:

Conjecture (Zauner 1999)

Heisenberg SICs exist in every dimension d .

- Zauner's conjecture is only known for finitely many d .
- Exact algebraic solutions in dimensions 1–21, 23, 24, 28, 30, 31, 35, 37, 39, 43, 48, 53, 124, 195, and 323. (Marcus Grassl reports solutions in 31 additional dimensions!) Numerical (probable) solutions in every dimension up to 151 and several other dimensions up to 844.
- Surprising observation: in known examples, the field of definition of Heisenberg SICs in dimension $d \geq 4$ is an abelian extension of $K = \mathbb{Q}(\sqrt{(d+1)(d-3)})$, often a particular ray class field $L_{(d)\infty_1}$ (Appleby, Flammia, McConnell, and Yard; 2016).

An observation when $d = 5$

Observation

For an appropriate choice of fiducial vector, the squares of the overlap phases (each having multiplicity 3) of a Heisenberg SIC in dimension $d = 5$ are the roots of the polynomial

$$\begin{aligned} x^8 - (8 - 5\sqrt{3})x^7 + (53 - 30\sqrt{3})x^6 - (156 - 90\sqrt{3})x^5 \\ + (225 - 130\sqrt{3})x^4 - (156 - 90\sqrt{3})x^3 + (53 - 30\sqrt{3})x^2 \\ - (8 - 5\sqrt{3})x + 1 = 0. \end{aligned}$$

That is...

An observation when $d = 5$

Observation

For an appropriate choice of fiducial vector, the squares of the overlap phases (each having multiplicity 3) of a Heisenberg SIC in dimension $d = 5$ are the roots of the polynomial

$$\begin{aligned} x^8 - (8 - 5\sqrt{3})x^7 + (53 - 30\sqrt{3})x^6 - (156 - 90\sqrt{3})x^5 \\ + (225 - 130\sqrt{3})x^4 - (156 - 90\sqrt{3})x^3 + (53 - 30\sqrt{3})x^2 \\ - (8 - 5\sqrt{3})x + 1 = 0. \end{aligned}$$

That is...the minimal polynomial of a Stark unit of conductor $5\infty_2$ over $\mathbb{Q}(\sqrt{3})$, except with $\sqrt{3}$ replaced by $-\sqrt{3}$.

An observation when $d = 5$

Observation

For an appropriate choice of fiducial vector, the squares of the overlap phases (each having multiplicity 3) of a Heisenberg SIC in dimension $d = 5$ are the roots of the polynomial

$$\begin{aligned} x^8 - (8 - 5\sqrt{3})x^7 + (53 - 30\sqrt{3})x^6 - (156 - 90\sqrt{3})x^5 \\ + (225 - 130\sqrt{3})x^4 - (156 - 90\sqrt{3})x^3 + (53 - 30\sqrt{3})x^2 \\ - (8 - 5\sqrt{3})x + 1 = 0. \end{aligned}$$

That is...the minimal polynomial of a Stark unit of conductor $5\infty_2$ over $\mathbb{Q}(\sqrt{3})$, except with $\sqrt{3}$ replaced by $-\sqrt{3}$.

Might this observation generalise?

An observation when $d = 5$

Observation

For an appropriate choice of fiducial vector, the squares of the overlap phases (each having multiplicity 3) of a Heisenberg SIC in dimension $d = 5$ are the roots of the polynomial

$$\begin{aligned}x^8 - (8 - 5\sqrt{3})x^7 + (53 - 30\sqrt{3})x^6 - (156 - 90\sqrt{3})x^5 \\+ (225 - 130\sqrt{3})x^4 - (156 - 90\sqrt{3})x^3 + (53 - 30\sqrt{3})x^2 \\- (8 - 5\sqrt{3})x + 1 = 0.\end{aligned}$$

That is...the minimal polynomial of a Stark unit of conductor $5\infty_2$ over $\mathbb{Q}(\sqrt{3})$, except with $\sqrt{3}$ replaced by $-\sqrt{3}$.

Might this observation generalise? Yes! Squares of overlap phases are Galois conjugate to powers of Stark units in all the cases I've checked, and this has been made totally explicit in the case of d an odd prime 2 modulo 3.

Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let $d \equiv 2 \pmod{3}$ be an odd prime. Let $\Delta = (d+1)(d-3)$ and $K = \mathbb{Q}(\sqrt{\Delta})$. With indices $m, n \in \mathbb{Z}/d\mathbb{Z}$, let

$$A_{m,n} = \{\alpha \mathcal{O}_K : \alpha \equiv m + n\sqrt{\Delta} \pmod{d} \text{ and } \rho_2(\alpha) > 0\} \in \text{Cl}_{(d)\infty_2}.$$

Then, there is a real algebraic unit α such that the ray class field $L_{(d)\infty_2} = K(\alpha)$ and $\alpha_{m,n} := \alpha^{\text{Art}(A_{m,n})}$ satisfy:

Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let $d \equiv 2 \pmod{3}$ be an odd prime. Let $\Delta = (d+1)(d-3)$ and $K = \mathbb{Q}(\sqrt{\Delta})$. With indices $m, n \in \mathbb{Z}/d\mathbb{Z}$, let

$$A_{m,n} = \{\alpha \mathcal{O}_K : \alpha \equiv m + n\sqrt{\Delta} \pmod{d} \text{ and } \rho_2(\alpha) > 0\} \in \text{Cl}_{(d)\infty_2}.$$

Then, there is a real algebraic unit α such that the ray class field $L_{(d)\infty_2} = K(\alpha)$ and $\alpha_{m,n} := \alpha^{\text{Art}(A_{m,n})}$ satisfy:

$$(1) \quad \alpha_{-m,-n} = \alpha_{m,n}^{-1}.$$

Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let $d \equiv 2 \pmod{3}$ be an odd prime. Let $\Delta = (d+1)(d-3)$ and $K = \mathbb{Q}(\sqrt{\Delta})$. With indices $m, n \in \mathbb{Z}/d\mathbb{Z}$, let

$$A_{m,n} = \{\alpha \mathcal{O}_K : \alpha \equiv m + n\sqrt{\Delta} \pmod{d} \text{ and } \rho_2(\alpha) > 0\} \in \text{Cl}_{(d)\infty_2}.$$

Then, there is a real algebraic unit α such that the ray class field $L_{(d)\infty_2} = K(\alpha)$ and $\alpha_{m,n} := \alpha^{\text{Art}(A_{m,n})}$ satisfy:

$$(1) \quad \alpha_{-m,-n} = \alpha_{m,n}^{-1}.$$

$$(2) \quad \text{The } \alpha_{m,n} \equiv 1 \pmod{\mathfrak{p}} \text{ for any prime } \mathfrak{p} | d \mathcal{O}_{L_{(d)\infty_2}}.$$

Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let $d \equiv 2 \pmod{3}$ be an odd prime. Let $\Delta = (d+1)(d-3)$ and $K = \mathbb{Q}(\sqrt{\Delta})$. With indices $m, n \in \mathbb{Z}/d\mathbb{Z}$, let

$$A_{m,n} = \{\alpha \mathcal{O}_K : \alpha \equiv m + n\sqrt{\Delta} \pmod{d} \text{ and } \rho_2(\alpha) > 0\} \in \text{Cl}_{(d)\infty_2}.$$

Then, there is a real algebraic unit α such that the ray class field $L_{(d)\infty_2} = K(\alpha)$ and $\alpha_{m,n} := \alpha^{\text{Art}(A_{m,n})}$ satisfy:

- (1) $\alpha_{-m,-n} = \alpha_{m,n}^{-1}$.
- (2) The $\alpha_{m,n} \equiv 1 \pmod{\mathfrak{p}}$ for any prime $\mathfrak{p} \mid d \mathcal{O}_{L_{(d)\infty_2}}$.
- (3) The roots of $(d+1)x^2 = \alpha_{m,n}$ are in $L_{(d)\infty_2}$.

Conjectures

Conjecture 1 (K; existence of special units in ray class field)

Let $d \equiv 2 \pmod{3}$ be an odd prime. Let $\Delta = (d+1)(d-3)$ and $K = \mathbb{Q}(\sqrt{\Delta})$. With indices $m, n \in \mathbb{Z}/d\mathbb{Z}$, let

$$A_{m,n} = \{\alpha \mathcal{O}_K : \alpha \equiv m + n\sqrt{\Delta} \pmod{d} \text{ and } \rho_2(\alpha) > 0\} \in \text{Cl}_{(d)\infty_2}.$$

Then, there is a real algebraic unit α such that the ray class field $L_{(d)\infty_2} = K(\alpha)$ and $\alpha_{m,n} := \alpha^{\text{Art}(A_{m,n})}$ satisfy:

- (1) $\alpha_{-m,-n} = \alpha_{m,n}^{-1}$.
- (2) The $\alpha_{m,n} \equiv 1 \pmod{\mathfrak{p}}$ for any prime $\mathfrak{p} \mid d \mathcal{O}_{L_{(d)\infty_2}}$.
- (3) The roots of $(d+1)x^2 = \alpha_{m,n}$ are in $L_{(d)\infty_2}$.
- (4) Fix $\mathfrak{p} \mid d \mathcal{O}_{L_{(d)\infty_2}}$, and let $(d+1)\nu_{m,n}^2 = \alpha_{m,n}$ satisfying $\nu_{m,n} \equiv 1 \pmod{\mathfrak{p}}$. Let $\nu_{0,0} = 1$. Then, the matrix

$$M = \frac{1}{d} \sum_{m=0}^{d-1} \sum_{n=0}^{d-1} \nu_{m,n} D_{-m,-n} \quad \dots \text{is a rank 1 idempotent.}$$

Conjectures

Conjecture 2 (K; find special units as Stark units)

A unit α satisfying Conjecture 1 and its Galois conjugates over K may be constructed as Stark units

$$\alpha^{\text{Art}(A)} = \exp(Z'_A(0)),$$

for all $A \in \text{Cl}_{(d)\infty_2}$.

As before, the **differenced ray class zeta function** $Z_A(s)$ is defined as

$$Z_A(s) = \left(\sum_{\mathfrak{a} \in A} N(\mathfrak{a})^{-s} \right) - \left(\sum_{\mathfrak{a} \in RA} N(\mathfrak{a})^{-s} \right),$$

where $R = \{a\mathcal{O}_K : a \equiv -1 \pmod{d} \text{ and } \rho_2(a) > 0\}$.

Results

Theorem (K)

Let d be an odd prime such that $d \equiv 2 \pmod{3}$. Assume Conjecture 1, and let \mathbf{M} be the matrix constructed therein. Let $\sigma \in \text{Gal}(L_{(d)\infty_2}/\mathbb{Q})$ be any Galois automorphism not fixing K ; that is, $\sigma(\sqrt{\Delta}) = -\sqrt{\Delta}$. Then $\sigma(\mathbf{M}) = \mathbf{v}\mathbf{v}^\dagger$ for a fiducial vector \mathbf{v} of a Heisenberg SIC.

Results

Theorem (K)

Let d be an odd prime such that $d \equiv 2 \pmod{3}$. Assume Conjecture 1, and let \mathbf{M} be the matrix constructed therein. Let $\sigma \in \text{Gal}(L_{(d)\infty_2}/\mathbb{Q})$ be any Galois automorphism not fixing K ; that is, $\sigma(\sqrt{\Delta}) = -\sqrt{\Delta}$. Then $\sigma(\mathbf{M}) = \mathbf{v}\mathbf{v}^\dagger$ for a fiducial vector \mathbf{v} of a Heisenberg SIC.

- The Stark unit construction of Conjecture 2 works (numerically) at least for $d = 5, 11, 17$, and 23 ($d = 53$ has been “spot-checked”).

Results

Theorem (K)

Let d be an odd prime such that $d \equiv 2 \pmod{3}$. Assume Conjecture 1, and let \mathbf{M} be the matrix constructed therein. Let $\sigma \in \text{Gal}(L_{(d)\infty_2}/\mathbb{Q})$ be any Galois automorphism not fixing K ; that is, $\sigma(\sqrt{\Delta}) = -\sqrt{\Delta}$. Then $\sigma(\mathbf{M}) = \mathbf{v}\mathbf{v}^\dagger$ for a fiducial vector \mathbf{v} of a Heisenberg SIC.

- The Stark unit construction of Conjecture 2 works (numerically) at least for $d = 5, 11, 17$, and 23 ($d = 53$ has been “spot-checked”).
- After finding the corresponding exact units by lattice basis reduction, we provide the first exact construction of a SIC in dimension 23 .

Thank you!

Thank you to the organisers!

Kopp, Gene. SICs and the Stark conjectures. Preprint available at arxiv:1807.05877. To appear in *Int. Math. Res. Notices*.