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Spaces of binary quadratic forms

Let D =0,1(mod 4) be a nonsquare integer.
Q(x,y)=ax?>+bxy+cy?:a,b,ccZ,
Qprim(D) = b? -4ac=D, gcd(a,b,c) =1
and Q is not negative-definite
The group PSLy(Z) acts on Qprim(D) by

Q'(x,y) = Q(rx + sy, tx + uy)

forfy:( : E)GPSL(Z).

An equivalence class in Qpim(D)/PSL2(Z) is denoted by [Q].
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Gauss composition

Let Qi, Qo € 9, (D). There exists some
(non-unique) Qs € Q.. (D) such that

(X, Y) = Qi(x1,¥1) Qe(x2, y2)
where

X = Axy X2 + Bx1 Y2 + Cy1 X2 + Dy1 o,
Y = EX1X2 + FX1y2 + Gy1X2 + Hy1y2.

Theorem (Gauss)

The class [Qs] is uniquely determined by [Q;] and [Q-], and
setting [@1] - [Q2] = [Q3] defines an abelian group law on
Qprim(D)/ PSL2(Z).
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Representations of primes

If pis an odd prime number and Q € Q;..(D), then

Q(m,n)=p = D=0(mod p).

The converse does not hold.

Theorem (Gauss)

Every odd prime p such that (%) =1 is representable by exactly
one class of binary quadratic forms in Qe Q*. (D)/PGLo(Z).

prim

Example (D = —-47)

5 5 [2x2 + xy + 6Yy?] [8x2 + xy + 4y?]
PEs2gr Iy { [2x% - xy + 6y?] [3x% - xy + 4y?]

47, 83, 191, | 2,7, 53, 59, 61, 89, | 3, 17, 37, 71, 79,
197, ... 97,131,157,173, ... | 101, 103, 149, ...
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The ring class group

In modern language, the group law on classes of binary
quadratic forms is isomorphic to the narrow ring class group of
a quadratic order of discriminant D.

Definition (Narrow ring class group)

{invertible fractional ideals of O}
{principal fractional ideals a© with Nm(«) >0}

CI*(0) =

Theorem (Gauss, Dirichlet, Dedekind)

Let Op = [ 24/P]. Then

C|+(OD) = Q]-;rlm(D)/ PSL2(Z)

L
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Applications and class field theory

The quadratic form interpretation of class groups has
widespread applications in number theory:

@ Proof of Dirichlet’s class number formula
@ Computation of/in class groups, cryptographic applications

@ Use of (mock) modular forms as generating functions for
class numbers

One application is to class field theory.
Qin(D)/ PSLa(Z) = CI* (Op) = Gal (H' /Q(VD) )

H" is the narrow Hilbert class field when D is a fundamental
discriminant, and the narrow ring class field generally.
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Class field theory

@ Ring class fields do not generate all abelian extensions of
a number field.

@ To describe the Galois groups of a cofinal set of abelian
extensions, we need ray class groups.

Let m be an ideal of Ok and S ¢ {real embeddings K — R}.

{fractional ideals of Ok coprime to m}
{aO with a =1 (mod m) and p(a) > 0 for pe S}

Do ray class groups have a binary quadratic form
interpretation?

Cly,s(Ok) =

TS SH
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Ray class groups

Yes! For “narrow” ray class groups of rational modulus m = (N).
But what does “narrow” mean?

Clineo oo (O)

— L

Clinoo, (O) ClE(0) Clinooy (O)

Cln(0)
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Ray class groups

Yes! For “narrow” ray class groups of rational modulus m = (N).
But what does “narrow” mean?

Clinco; 0, (O)

— T

Clinoo, (O) ClE(0) Clinos, (O)
1 m 2

Cln(0O)

Definition (K and Lagarias, 2021+; Beckwith and K, 2021+)

The narrow ray class group of an order modulo (m, S) is

{invertible fractional ideals of O coprime to m}

Cn(0) = =20 with a =1 (mod m) and Nm(a) > 0}
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Main theorem

Q(x,y)=ax?>+bxy+cy?:a,b,ccZ,
b? - 4ac = D, gcd(a,N) = gcd(a, b,c) =1,

N? .
Qprirtl(D) =
and Q is not negative-definite

r1(N):{(: 3)EPSL2(Z):(; 3);(8 T)(modN)}.

Theorem (Beckwith and K, 2021+)
There is a buectlon Qpnm(D)/ﬂ (N) = CI(N)(OD)

Consequently, Q" (D)/I'{(N) has an abelian group structure.

pnm

A version of this theorem was obtained for the maximal order in
the imaginary quadratic case by Eum, Koo, and Shin in 2017.
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Mapping forms to ideals

Write Q(x,y) = ax® + bxy + cy® = a(x - 7y)(x - 7'y) with

7= YD Define ¢(Q) = a(Z + 7Z) = aZ.+ /L7,

The factor a matters.

Note that Op = Z + arZ and (ar)? = -b(ar) - ac, so ¢(Q) is an
integral Op-ideal, and Nm(¢(Q)) = a. So ¢(Q) is coprime to N.

One must then check that...
@ ¢(Q) isinvertible,
© 9(Q") ~ 6(Q) in Cliy, (Oo) for 7 € T4 (N),
@ [Q]~ [¢(Q)] is injective and surjective.
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Representation of primes

Theorem (Beckwith and K, 2021+)

Suppose N > 2, and let p be a rational prime with
ged(p, ND) = 1. Fix a binary quadratic form Q QI’)\L;(D) The
following are equivalent:

(1) Qrepresents p by Q(m, n) = p with
(m,n) =(1,0) (mod N).

(2) #(Q) ~pin CI(N)(OD), where (p) = pp’ in Op and
(choice of prime) p = (am + #n) (cn + b+¢_ )Z

@ By Artin reciprocity, the condition ¢(Q) ~ pin (2) is
equivalent to Art(¢(Q)) = Frob, in Gal (H(OND)VQ(\/B)).

@ For p odd, (1) or (2) implies that (%) = 1.
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Example

Set D=12,50 Op = Z[\/§] and set N = 5. The narrow ray

class group Cl3 (Z[V/3]) = Z/2Z x Z/4Z has order 8.
[Q] p=Q(m,n): (mn)=(1,0)(mod 5)
[x% - 3y?] 37,97, 157,277, 337,397 ...
[-x% + 3y?] 3,23, 83, 263, 383 ...
[X% +2xy - 2)?] 13, 73, 193, 313, 373, . ..
[-x% - 2xy + 2y°] 2,47,107, 167, 227, 347, ...
(X% +4xy + y?] 61,181,241, ...
[-x% —4xy - y?] 59, 179, 239, 359, ...
[11 2-34xy+26y] 11,71,131, 191, 251, 311, . ..
[-11x%+34xy-26y2] | 109, 229, 349, ...
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Thank you for listening! Any questions?
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