
Gauss composition Ray class groups Refined Gauss composition

Gauss composition
with level structure

Gene S. Kopp⋆

Joint work with Olivia Beckwith

⋆University of Bristol

6 Jan 2021

1



Gauss composition Ray class groups Refined Gauss composition

Spaces of binary quadratic forms

Let D ≡ 0,1 (mod 4) be a nonsquare integer.

Q
+
prim(D) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q(x ,y) = ax2 + bxy + cy2 ∶ a,b,c ∈ Z,
b2 − 4ac = D, gcd(a,b,c) = 1
and Q is not negative-definite

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

The group PSL2(Z) acts on Qprim(D) by

Qγ
(x ,y) = Q(rx + sy , tx + uy)

for γ = (
r s
t u ) ∈ PSL(Z).

An equivalence class in Qprim(D)/PSL2(Z) is denoted by [Q].
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Gauss composition

Let Q1,Q2 ∈ Q
+
prim(D). There exists some

(non-unique) Q3 ∈ Q
+
prim(D) such that

Q3(X ,Y ) = Q1(x1,y1)Q2(x2,y2)

where

X = Ax1x2 +Bx1y2 +Cy1x2 +Dy1y2,

Y = Ex1x2 + Fx1y2 +Gy1x2 +Hy1y2.

Theorem (Gauss)
The class [Q3] is uniquely determined by [Q1] and [Q2], and
setting [Q1] ⋅ [Q2] = [Q3] defines an abelian group law on
Q+prim(D)/PSL2(Z).
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Representations of primes

If p is an odd prime number and Q ∈ Q+prim(D), then

Q(m,n) = p Ô⇒ D ≡ ◻(mod p).

The converse does not hold.

Theorem (Gauss)

Every odd prime p such that (D
p ) = 1 is representable by exactly

one class of binary quadratic forms in Q ∈ Q+prim(D)/PGL2(Z).

Example (D = −47)

[x2+xy+12y2] {
[2x2 + xy + 6y2]

[2x2 − xy + 6y2]
} {

[3x2 + xy + 4y2]

[3x2 − xy + 4y2]
}

47, 83, 191,
197, . . .

2, 7, 53, 59, 61, 89,
97, 131, 157, 173, . . .

3, 17, 37, 71, 79,
101, 103, 149, . . .
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The ring class group

In modern language, the group law on classes of binary
quadratic forms is isomorphic to the narrow ring class group of
a quadratic order of discriminant D.

Definition (Narrow ring class group)

Cl+(O) =
{invertible fractional ideals of O}

{principal fractional ideals αO with Nm(α) > 0}
.

Theorem (Gauss, Dirichlet, Dedekind)

Let OD = Z [D+
√

D
2 ]. Then

Cl+(OD) ≅ Q
+
prim(D)/PSL2(Z).
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Applications and class field theory

The quadratic form interpretation of class groups has
widespread applications in number theory:

Proof of Dirichlet’s class number formula
Computation of/in class groups, cryptographic applications
Use of (mock) modular forms as generating functions for
class numbers

One application is to class field theory.

Q
+
prim(D)/PSL2(Z) ≅ Cl+(OD) ≅ Gal (H+

/Q(
√

D))

H+ is the narrow Hilbert class field when D is a fundamental
discriminant, and the narrow ring class field generally.
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Class field theory

Ring class fields do not generate all abelian extensions of
a number field.
To describe the Galois groups of a cofinal set of abelian
extensions, we need ray class groups.

Definition
Let m be an ideal of OK and S ⊆ {real embeddings K ↪ R}.

Clm,S(OK ) =
{fractional ideals of OK coprime to m}

{αO with α ≡ 1 (mod m) and ρ(α) > 0 for ρ ∈ S}
.

Question
Do ray class groups have a binary quadratic form
interpretation?
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Ray class groups

Yes! For “narrow” ray class groups of rational modulus m = (N).
But what does “narrow” mean?

Clm∞1∞2(O)

Clm∞1(O) Cl+m(O) Clm∞2(O)

Clm(O)

Definition (K and Lagarias, 2021+; Beckwith and K, 2021+)

The narrow ray class group of an order modulo (m,S) is

Cl+m(O) =
{invertible fractional ideals of O coprime to m}

{αO with α ≡ 1 (mod m) and Nm(α) > 0}
.
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Main theorem

Q
N,+
prim(D) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q(x ,y) = ax2 + bxy + cy2 ∶ a,b,c ∈ Z,
b2 − 4ac = D, gcd(a,N) = gcd(a,b,c) = 1,

and Q is not negative-definite

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Γ1(N) = {(
r s
t u ) ∈ PSL2(Z) ∶ (

r s
t u ) ≡ (

1 ∗

0 1 ) (mod N)} .

Theorem (Beckwith and K, 2021+)

There is a bijection QN,+
prim(D)/Γ1(N) ≅ Cl+(N)(OD).

Consequently, QN,+
prim(D)/Γ1(N) has an abelian group structure.

A version of this theorem was obtained for the maximal order in
the imaginary quadratic case by Eum, Koo, and Shin in 2017.
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Mapping forms to ideals

Write Q(x ,y) = ax2 + bxy + cy2 = a(x − τy)(x − τ ′y) with
τ = −b+

√
D

2a . Define φ(Q) = a(Z + τZ) = aZ + −b+
√

D
2 Z.

The factor a matters.

Note that OD = Z + aτZ and (aτ)2 = −b(aτ) − ac, so φ(Q) is an
integral OD-ideal, and Nm(φ(Q)) = a. So φ(Q) is coprime to N.

One must then check that...
φ(Q) is invertible,
φ(Qγ) ∼ φ(Q) in Cl+(N)(OD) for γ ∈ Γ1(N),

[Q] ↦ [φ(Q)] is injective and surjective.
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Representation of primes

Theorem (Beckwith and K, 2021+)
Suppose N > 2, and let p be a rational prime with
gcd(p,ND) = 1. Fix a binary quadratic form Q ∈ Q

N,+
prim(D). The

following are equivalent:
(1) Q represents p by Q(m,n) = p with

(m,n) ≡ (1,0) (mod N).
(2) φ(Q) ∼ p in Cl+(N)(OD), where (p) = pp′ in OD and ☀.

☀ (choice of prime) p = (am + −b+
√

D
2 n)Z + (cn + b+

√
D

2 m)Z

By Artin reciprocity, the condition φ(Q) ∼ p in (2) is
equivalent to Art(φ(Q)) = Frobp in Gal (HOD ,+

(N) /Q(
√

D)).

For p odd, (1) or (2) implies that (D
p ) = 1.
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Example

Set D = 12, so OD = Z[
√

3], and set N = 5. The narrow ray
class group Cl+5 (Z[

√
3]) ≅ Z/2Z ×Z/4Z has order 8.

[Q] p = Q(m,n): (m,n) ≡ (1,0) (mod 5)
[x2 − 3y2] 37, 97, 157, 277, 337, 397 . . .
[−x2 + 3y2] 3, 23, 83, 263, 383 . . .
[x2 + 2xy − 2y2] 13, 73, 193, 313, 373, . . .
[−x2 − 2xy + 2y2] 2, 47, 107, 167, 227, 347, . . .
[x2 + 4xy + y2] 61, 181, 241, . . .
[−x2 − 4xy − y2] 59, 179, 239, 359, . . .
[11x2 − 34xy + 26y2] 11, 71, 131, 191, 251, 311, . . .
[−11x2+34xy−26y2] 109, 229, 349, . . .
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Thank you!

Thank you for listening! Any questions?
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