
Gauss composition Gauss composition for ray class groups Twisted traces of biharmonic Maass forms

Gauss composition, polyharmonic Maass
forms, and Hecke L-series

Gene Kopp, University of Bristol

Ongoing joint work with Olivia Beckwith, University of Illinois
at Urbana-Champaign

April 20, 2021

1



Gauss composition Gauss composition for ray class groups Twisted traces of biharmonic Maass forms

Origins of the subject

Let Q(x , y) = ax2 + bxy + cy2, a,b, c ∈ Z.

Question
Which primes p are of the form p = Q(x , y) for some x , y ∈ Z?

Fermat: p = x2 + y2 if and only if p = 2 or p ≡ 1 (mod 4).

Other Q(x , y)? Gauss studied this in Disquisitiones
Arithmeticae.
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Spaces of binary quadratic forms

Let D ≡ 0,1 (mod 4) be nonsquare.

Q+
prim(D) :=


Q(x , y) = ax2 + bxy + cy2 : a,b, c ∈ Z,

b2 − 4ac = D, gcd(a,b, c) = 1,
and Q is not negative-definite

 .

Important fact: The group SL2(Z) acts on Q+
prim(D) by

Qγ(x , y) = Q(rx + sy , tx + uy)

for γ =

(
r s
t u

)
∈ SL(Z).

An equivalence class in Qprim(D)+/SL2(Z) is denoted by [Q].
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Representing primes

If p is an odd prime and Q ∈ Q+
prim(D), then

Q(m,n) = p =⇒ D ≡ � (mod p) .

Theorem (Gauss)

Every odd prime p such that
(

D
p

)
= 1 is represented by exactly

one class in Q+
prim(D)/GL2(Z).

Example (D = −47)

[x2+xy+12y2]

{
[2x2 + xy + 6y2]
[2x2 − xy + 6y2]

} {
[3x2 + xy + 4y2]
[3x2 − xy + 4y2]

}
47, 83, 191,
197, . . .

2, 7, 53, 59, 61, 89,
97, 131, 157, 173,
. . .

3, 17, 37, 71, 79,
101, 103, 149, . . .
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Gauss composition

Let Q1,Q2 ∈ Q+
prim(D). There exists some

(non-unique) Q3 ∈ Q+
prim(D) such that

Q3(X ,Y ) = Q1(x1, y1)Q2(x2, y2)

where

X = Ax1x2 + Bx1y2 + Cy1x2 + Dy1y2,

Y = Ex1x2 + Fx1y2 + Gy1x2 + Hy1y2.

Theorem (Gauss)
[Q3] is uniquely determined by [Q1] and [Q2], and setting
[Q1] · [Q2] = [Q3] defines an abelian group law on
Q+

prim(D)/ SL2(Z).
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Orders of quadratic fields

Modern interpretation of Gauss composition: ring class groups.

Definition

For D = f 2D0, OD is the order of discriminant D:

OD := Z +
D +
√

D
2

Z.

Example:
D = −3

-2 -1 1 2
Re(z)

-1.5

-1.0

-0.5

0.5

1.0

1.5

Im(z)
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Multiplicative structure

Question
Does OD have unique factorization into primes? Not generally.

Examples

2× 3 = (1−
√
−5)(1 +

√
−5) in O−20

32 × 7 = (4 +
√

79)(4−
√

79) in O316

52 = (4 + 3i)(4− 3i) in O−36
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Invertible ideals

Instead of numbers, look at invertible ideals.

A fractional ideal a of OD is invertible if there is another
fractional ideal b such that ab = OD.

Invertible ideals of OD always enjoy unique factorization into
prime ideals.

A fractional ideal is principal if it is of the form a = αOD.

Nonprincipal ideals obstruct unique factorization.
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Example: D = −36

52 = (4 + 3i)(4− 3i) in O−36

These irreducible numbers factor as ideals:

5O−36 = pp′ (4 + 3i)O−36 = p2 (4− 3i)O−36 = (p′)2;

p = (6− 3i)O−36 + (4 + 3i)O−36;

p′ = (6 + 3i)O−36 + (4− 3i)O−36.

To understand arithmetic of OD, study its nonprincipal ideals.

Avoid noninvertible ideals, such as 3O−36 + 3iO−36.
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Class groups and class numbers

Definition
The ring class group of OD is

Cl(OD) :=
{invertible fractional ideals of OD}
{principal fractional ideals αOD}

.

|Cl(OD)| = 1 if and only if OD has unique factorization of
numbers coprime to the conductor f .
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Narrow ring class group

Definition
The narrow ring class group of OD is

Cl+(OD) =
{invertible fractional ideals of OD}

{αOD with Nm(α) > 0}
.

Theorem (Gauss, Dirichlet, Dedekind)

Cl+(OD) ∼= Q+
prim(D)/SL2(Z).
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Class field theory

Another interpretation of Q+
prim(D)/ SL2(Z): Galois group.

Question
What are the abelian extensions of K ?

If p is a prime ideal of OD, then p ramifies in an extension
of K if p is divisible by the square of a prime ideal in the
extension.

Theorem (part of Artin Reciprocity)

Art : Cl+(OD) ∼= Gal(H+
D /K ),

where H+
D is the maximal abelian extension of Q(

√
D) that is

unramified at every prime ideal of OD.
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Representing primes

Let φ be the isomorphism from Q+
prim(D)/ SL2(Z) to Cl+(OD).

Corollary of Artin reciprocity and Gauss composition

Let p be a rational prime with gcd(p,D) = 1, Q ∈ Q+
prim(D).

TFAE:
(1) Q(m,n) = p for some m,n ∈ Z.
(2) φ(Q) = [p] in Cl+(OD), where (p) = pp′ in OD.
(3) Art(φ(Q)) = Frobp in Gal

(
H+

D /K
)
, where (p) = pp′ in OD.
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Ray class groups

Ring class fields do not generate all abelian extensions of
a number field.
To describe the Galois groups of all finite abelian
extensions, we need ray class groups.

Definition (K and Lagarias for nonmaximal orders)
Let m be an ideal of OD and S ⊆ {real embeddings K ↪→ R}.

Clm,S(OD) =
{invertible fractional ideals of OD coprime to m}
{αOD with α ≡ 1 (mod m) and ρ(α) > 0 for ρ ∈ S}

.

Theorem (Artin Reciprocity + K and Lagarias)

There is an abelian extension Hm,S
D of K (uniquely specified by

certain conditions on splitting of primes) with an isomorphism

Art : Clm,S(OD) ∼= Gal(Hm,S
D /K ).
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Narrow ray class groups

Let∞1,∞2 be the real embeddings of K = Q(
√

D).

Clm∞1∞2(OD)

Clm∞1(OD) Cl+m(OD) Clm∞2(OD)

Clm(OD)

Definition
The narrow ray class group of OD modulo (m,S) is

Cl+m(OD) =
{invertible fractional ideals of O coprime to m}
{αOD with α ≡ 1 (mod m) and Nm(α) > 0}

.
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Field theoretic interpretation

Hm,∞1∞2
D

Hm,∞1
D Hm,+

D Hm,∞2
D

Hm
D

HD

K
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Refined Gauss composition

QN,+
prim(D) :=


Q(x , y) = ax2 + bxy + cy2 : a,b, c ∈ Z,

b2 − 4ac = D, gcd(a,N) = gcd(a,b, c) = 1,
and Q is not negative-definite

 .

Γ1(N) =

{(
r s
t u

)
∈ SL2(Z) :

(
r s
t u

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

Theorem 1 (Beckwith and K, 2021+)

There is a bijection φ : QN,+
prim(D)/Γ1(N) ∼= Cl+(N)(OD).

QN,+
prim(D)/Γ1(N) has an abelian group structure.

Known for OD0 with fundamental discriminant D0 < 0 by Eum,
Koo, and Shin in 2017.
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Mapping forms to ideals

Q(x , y) = ax2 + bxy + cy2 = a(x − τy)(x − τ ′y)

with τ = −b+
√

D
2a . Define the twisting factor:

RQ =

{
{αOD : α ≡ 1 (mod N) ,Nm(α) < 0} if D > 0 and a < 0,
idN if D < 0 or a > 0,

Define φ(Q) = RQ [a(Z + τZ)] .

One must then check that...
a(Z + τZ) is coprime to N
a(Z + τZ) is invertible,
φ(Qγ) ∼ φ(Q) in Cl+(N)(OD) for γ ∈ Γ1(N),

[Q] 7→ [φ(Q)] is injective and surjective.
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Representation of primes

Theorem 2 (Beckwith and K, 2021+)
Let p be a rational prime, and suppose gcd(p,ND) = 1. Fix a
binary quadratic form Q ∈ QN,+

prim(D). The following are
equivalent:
(1) Q(m,n) = p for some (m,n) ≡ (1,0) (mod N).
(2) φ(Q) = [p] in Cl+(N)(D), where (p) = pp′ for distinct prime

ideals p and p′ in OD.
(3) Art(φ(Q)) = Frobp in Gal(HOD ,+

(N) /K ), where (p) = pp′ for
distinct prime ideals p, p′ in OD .
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Example

D = −7, OD = Z[1+
√
−7

2 ], N = 3.

Cl+3 (O−7) ∼= Z/4Z.

[Q] p = Q(m,n):
(m,n) ≡ (1,0) (mod 3)

[x2 + xy + 2y2] 67, 79, 127, 163, 277, 373, 421,
463 . . .

[2x2 + 3xy + 2y2]
[2x2 − 3xy + 2y2]

2, 11, 23, 29, 53, 71, 107, 113, 137,
149, 179, 191, 197, 233, 239, 263,
281, 317, 347, 359, 389, 401, 431,
443, 449, 491 . . .

[4x2 + 5xy + 2y2] 7, 37, 43, 109, 151, 193, 211, 331,
337, 379, 457, 487, 499 . . .
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Example

D = 21, OD = Z[1+
√

21
2 ], N = 6.

Cl+6 (O21) ∼= Z/6Z.

[Q] p = Q(m,n):
(m,n) ≡ (1,0) (mod 6)

[x2 + 5xy + y2] 7, 67, 211, 421, 457, 487 . . .
[−(x2 + 5xy + y2)] 89, 101, 131, 173, 227, 257, 467,

563, 587, . . .
[−5x2 + xy + y2]
[−5x2 − xy + y2]

37, 43, 79, 109, 127, 151, 163,
193, 277, 331, 337, 373, 379, 463,
499, 541, 547, 571 . . .

[−(−5x2 + xy + y2)]
[−(−5x2 − xy + y2)]

5, 17, 41, 47, 59, 83, 167, 251, 269,
293, 311, 353, 383, 419, 461,479,
503, 509, 521, 593 . . .
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Example

D = 12, OD = Z[
√

3], N = 5.
Cl+5

(
Z[
√

3]
)
∼= Z/2Z× Z/4Z.

[Q] p = Q(m,n):
(m,n) ≡ (1,0) (mod 5)

[x2 − 3y2] 61,181, 241 . . .
[−x2 + 3y2] 59,179,239, 359 . . .
[3x2 − y2] 3,23,83,263,383 . . .
[−3x2 + y2] 37, 97, 157, 227, 397, . . .
[11x2 − 34xy + 26y2] 11, 71, 131, 191, 251, 311, . . .
[−11x2 + 34xy − 26y2] 109, 229, 349, . . .
[2x2 − 2xy − y2] 2,47,107, 167, 227, 347 . . .
[−2x2 + 2xy + y2] 13,73,193, 313, 373 . . .
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Segue

As an application of our results on refined Gauss composition
(and other tools), we prove a formula for the leading coefficients
of Hecke L-series for real quadratic fields as a “twisted trace" of
biharmonic Maass forms.

Our motivation comes from explicit class field theory.
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Class field theory

Let K/Q be a number field.

Question
What are the finite abelian extensions of K ?

Class field theory
The finite abelian extensions of K correspond to quotients of
the ray class groups for K .

Question
Is there an explicit description of these extensions?
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Explicit class field theory

Kronecker-Weber Theorem

Every finite abelian extension of Q is contained in Q(e2πi/n) for
some n.

Hilbert’s Twelfth Problem
Find an analogue of the Kronecker-Weber theorem for number
fields other than Q.

In other words, find an explicit description of the finite abelian
extensions of K , where K is a number field.

25



Gauss composition Gauss composition for ray class groups Twisted traces of biharmonic Maass forms

Kronecker’s Jugendtraum

Let K = Q(
√

D), where D < 0.

OK = Z + τZ for some τ ∈ H.
Let j(z) : H→ C be the modular j-function,

j(τ) = e−2πiτ + 744 + 196884e2πiτ + 21493760e4πiτ + · · · .

Theorem (Kronecker)
The maximal unramified abelian extension of K is K (j(τ)).

All finite abelian extensions of K are contained in
K (j(τ), ℘(τ, z)), where ℘ is the Weierstrass ℘ function, an
elliptic function, and z ∈ C/(Z + τZ) is a torsion point.
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Real quadratic fields

Question
Can we construct abelian extensions of real quadratic fields
using a similar method?

Issue

j(a + b
√

D) is undefined for D > 0.
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Overview of cycle integrals

Idea
Take the average of a modular function (such as j) along a
geodesic path.

Seems like a reasonable candidate for a real quadratic
analogues of singular moduli

Related (as we’ll see) to coefficients of harmonic Maass
forms

..but cycle integrals of the j-function seem to be
transcendental. Maybe try other modular functions?
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Definition of cycle integrals

CQ SQ

-1.5 -1.0 -0.5 0.5

0.2

0.4

0.6

0.8

1.0

Let Q(x , y) = ax2 + bxy + cy2, disc(Q) > 0.

SQ = {τ ∈ H : a|τ |2 + b Re(τ) + c = 0}.

Write stabSL2(Z)(SQ) = 〈gQ〉, w ∈ SQ, CQ a path from w to gQw .
The cycle integral of f : SL2(Z)\H→ C for Q is∫

CQ

f (z)
dz

Q(z,1)
.
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Twisted races of cycle integrals

For a holomorphic modular function f , let

TrD(f , χ) =
∑

Q∈Q+
prim(D)

χ(Q)

∫
CQ

f (τ)

Q(τ,1)
dτ

for a character χ on Q+
prim(D)/ SL2(Z).

Theorem (Duke, Imamoglu, and Tóth, 2011)
For χ a genus character, the values TrD(j , χ) are coefficients of
a weight 1/2 mock modular form.
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Generalization of Duke-Imamoglu-Tóth

Theorem (Matsusaka, 2018)
Traces of polyharmonic modular functions are coefficients of
the holomorphic part of half integral weight polyharmonic weak
Maass forms.

Example

The function f (z) = − log(y |η(τ)|4) is a polyharmonic modular
function which appears in the Kronecker Limit formula.

The twisted traces of f (z) are coefficients of a polyharmonic
weak Maass form of weight 1

2 .
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Kronecker limit formula

For Re(k + 2s) > 2,

Ek (τ, s) :=
∑

(m,n)∈Z2\{(0,0)}

ys

(mτ + n)k |mτ + n|−2s .

Theorem (Kronecker limit formula)
For τ ∈ H

E0(τ, s) =
2π

s − 1
+ 2π(2γ0 − log 4 + log(y |η(τ)|4)) + O(s − 1)

for s in a neighborhood of 1. Here γ0 is Euler’s constant.

Note: For a fixed imaginary quadratic irrationality τ ∈ H, the
function E0(τ, s) is a partial ideal class zeta function for Z[τ ].
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Kronecker limit formula for positive discriminants

Theorem (Hecke)

Let D > 0, A ∈ Cl(Q(
√

D)), and let ζ(s,A) =
∑

a∈A Nm(a)−s for
Re(s) > 1.

ζ(s,A) =
2D−1/2 log ε

s − 1
+

2 log ε√
D

(
−1

2
log D + 2γ0

)
− 1√

D

∫
CQ

log
(

y |η(τ)|4
) dτ

Q(τ,1)
+ O(s − 1).

Here ε is a fundamental unit and Q depends on A.

Theorem 3 (Beckwith and K, 2021+)
We obtain a generalization where A is a ray class of K and the
Laurent coefficients are polyharmonic Maass forms for Γ(N).
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Definition

Let Γ be a congruence subgroup of SL2(Z), and let r ∈ 1
2N. A

polyharmonic Maass form of weight k and depth r is a function
f : H→ C such that

1 f ( aτ+b
cτ+d ) = (cτ + d)k f (τ) for all γ ∈ Γ.

2 ∆r
k (f ) = 0,

where

∆k = y2
(
∂2

∂x2 +
∂2

∂y2

)
− iky

(
∂

∂x
+ i

∂

∂y

)
.

3 There exists c ∈ R such that f (x + iy) = O(yc) as y →∞,
and analogous conditions hold at the other cusps of Γ.
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Remarks

For ξk = 2iyk ∂
∂z , we have ∆k = ξ2−k ◦ ξk .

The definition makes sense for r = 1
2 ,

3
2 , · · · by interpreting

∆
1
2
k as ξk .

When r = 1
2 , these are holomorphic modular forms.

When r = 1, these are harmonic Maass forms.

When r = 3/2, these are sesquiharmonic Maass forms.

When r = 2, these are biharmonic Maass forms.

We let V r ,Γ
k denote the space of such functions.
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Level 1

Theorem (Lagarias and Rhoades, 2015)

Let Γ = SL2(Z). The space V r ,Γ
k is spanned by Sk (Γ) and the

first r Taylor coefficients of Ek (τ, s) at s = 0.

Example

E0(τ, s) =
∑
n≥0

An(τ)sn.

A0(τ) ∈ V 1/2,Γ
0 = M0(Γ).

A1(τ) ∈ V 3/2,Γ
0

A2(τ) ∈ V 5/2,Γ
0
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Diagram

Let Γ = SL2(Z). For k > 2 and k = 0:

· · ·

V 2,Γ
2−k

V 3/2,Γ
k

V 1,Γ
2−k

V 1/2,Γ
k = Mk (SL2(Z))

ξk

ξ2−k

ξk

ξ2−k
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Generalizations

Other eigenvalues: Andersen, Lagarias, Rhoades

Polyharmonic weak Maass forms: Matsusaka

Half integral weight polyharmonic Maass forms: Matsusaka

Our work: polyharmonic Maass forms with respect to
Γ(N) := {

(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N).
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Offset Eisenstein series

Definitions
Let q1,q2 ∈ Q.

Ek
q1,q2

(τ, s) :=∑
(m,n)∈Z2

ys

|(m + q1)τ + (n + q2)|2s ((m + q1)τ + (n + q2))k

for Re(2s + k) > 2.
Ek

q1,q2
have meromorphic continuation in the s-variable to C.

Laurent expansion:

∞∑
j=−1

Bk ,j
q1,q2

(τ)sj := Ek
q1,q2

(τ, s).
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Result on spaces of polyharmonic Maass forms

Theorem 4 (Beckwith and K, 2021+)

Let k be an integer not equal to 1. A basis for V r ,Γ(N)
k is given in

terms of{
Bk ,j

a1
N ,

a2
N

(τ) : (a1,a2) ∈ (Z/NZ)2,−1 ≤ j ≤ r + 1
}
.

Example

For k = 0, if q1 = q2 = 1
2 , then

B0,r
1/2,1/2(τ) ∈ V r ,Γ(2)

k .
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Diagram

For k > 2:
· · ·

V 2
2−k ,Γ(N)

V 3/2,Γ(N)
k

V 1,Γ(N)
2−k

V 1/2,Γ(N)
k = Mk (Γ(N))

ξk

ξ2−k

ξk

ξ2−k
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Diagram

For k = 0:
· · · · · ·

V 2,Γ(N)
2 V 2,Γ(N)

0

V 3/2,Γ(N)
2 V 3/2,Γ(N)

0

V 1,Γ(N)
2 V 1,Γ(N)

0

V 1/2,Γ(N)
2 = M2(Γ(N)) V 1/2,Γ(N)

0 = M0(Γ(N))

ξ2

ξ0

ξ2

ξ0

ξ2

ξ0

ξ2

ξ0
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Hecke L-series

Definition
Let (N,D) = 1 and let χ be a character of a ray class group
Cl+(N)(OD).

L(s, χ) :=
∑
a≤OD

χ([a]) Nm(a)s

for Re(s) > 1 is the Hecke series for K with respect to χ.

Products of these L(s, χ) are Dedekind zeta functions for
totally real abelian extensions of K .
The Stark conjectures predict that (in certain cases)
L′′(0, χ) is a quadratic form in logarithms of units of abelian
extensions of K .
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Hecke L-series

Let φ : Cl+N (OD)→ Q+,N
prim(D)/Γ1(N) be as in Theorem 1.

Theorem 5 (Beckwith and K, 2021+)
If χ factors through ClN(OD), then

L(s, χ) =

1
2

∑
A∈Cl+N (O)

χ(A)

∫
Cφ(A)

B0,2
1
N ,0

(τ)
dτ

φ(A)(τ,1)

 s2+O(s3).

The integrand is a biharmonic Maass form for Γ1(N).
Proof idea: We use Hecke’s method to compute L(s, χ) in
terms of offset Eisenstein series.
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Example

Consider K = Q(
√

23), N = 5.
Cl+5 (K ) ∼= Z/12Z.
Let χ be an order 3 Hecke character of conductor 5OK .
This character defines a degree 3 abelian extension Hχ/K .
Gal(Hχ/Q) ∼= S3.

We can prove that L(s, χ) = ζM(s)/ζ(s) for a non-Galois cubic
extension M = Q(α).

Here, α3 − 17α2 + 63α + 1 = 0 and M(
√

23) = Hχ.
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Example

Combining the class number formula with our result,

2
(
log(α) log(β)− log(−α′) log(−β′)

)
=

1
2

2∑
j=0

χ(Aj)

∫
CQj

B0,2
1/5,0(τ)

dτ
Q(τ,1)

,

where

α ≈ 5.48872, α′ ≈ −0.0158055 roots of x3 − 17x2 + 63x + 1 = 0,

β ≈ 1.16151, β′ ≈ −74.1731 roots of x3 + 73x2 − 87x + 1 = 0.
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The end.

Thank you all for your attention!

Questions?
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