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Gauss composition
[ ]
Origins of the subject

Let Q(x,y) = ax® + bxy + cy?, a,b,c € Z.

Which primes p are of the form p = Q(x, y) for some x,y € Z?

Fermat: p = x? + y?ifandonlyif p=2o0orp=1 (mod 4).

Other Q(x, y)? Gauss studied this in Disquisitiones
Arithmeticae.
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Spaces of binary quadratic forms

Let D=0,1 (mod 4) be nonsquare.
Q(x,y) = ax®>+bxy +cy®:a,b,cc Z,
Qim(D) = b? —4ac = D, gcd(a, b, c) =1,
and Q is not negative-definite
Important fact: The group SL»(Z) acts on Q. (D) by

prim

Q'(x,y) = Q(rx + sy, tx + uy)

for v = < ; Z) € SL(Z).

An equivalence class in Qpim(D) "/ SL2(Z) is denoted by [Q).
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Representing primes

If p is an odd prime and Q € Q. (D), then

prim

Q(m,n)=p = D=0 (mod p).

Theorem (Gauss)

Every odd prime p such that (%) = 1 is represented by exactly
one class in @t (D)/GLo(Z).

prim

Example (D = —47)

2 2 [2X2 + xy + 6y2] [8x2 + xy + 4y?
[ +xy+12y7] { [2x2 — xy + 6)?] [8x2 — xy + 4y?]
2 7.53, 50 61,89, |3, 17, 37, 71, 79,
;‘;7 83, 191,197 131, 157, 173, | 101, 103, 149, . .

4
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Gauss composition

Let @y, Qs € Q+

prim

(non-unique) Q; € Q.

prim

Q3(X,Y) = Qi(x1,y1)Qa(x2, y2)

where

(D). There exists some
(D) such that

X = Ax1x2 + Bx1y2 + Cy1x2 + Dy1 yo,
Y = Exix2 + Fx1¥2 + Gy X2 + Hy1yo.

Theorem (Gauss)

[@s] is uniquely determined by [Q4] and [Qz], and setting
[Q1] - [@Q2] = [Qs] defines an abelian group law on
Qpim(D)/ SLa(Z).

L




Gauss composition
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Orders of quadratic fields

Modern interpretation of Gauss composition: ring class groups.

Definition

For D = f2D0, Op is the order of discriminant D:

D D
Op:=7+ 74_ fZ.
2
Im(z)
Example: e o o o °
D = _3 1.0
° ° ° ° °
—9 ® ® ¢ @ — 0
° ° 0710 ° °
e o o o o




Gauss composition
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Multiplicative structure
Does Op have unique factorization into primes? Not generally.

(Examples
2x3=(1-+v=5)14++v=5)in 0O_y

32 x 7 = (4 + V79)(4 — V79) in Og16

52 = (4 + 3i)(4 — 3i) in O_gg

y




Gauss composition
L ]

Invertible ideals

Instead of numbers, look at invertible ideals.

A fractional ideal a of Op is invertible if there is another
fractional ideal b such that ab = Op.

Invertible ideals of Op always enjoy unique factorization into
prime ideals.

A fractional ideal is principal if it is of the form a = aOp.

Nonprincipal ideals obstruct unique factorization.
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Example: D = —36

52 = (4 4 3i)(4 — 3i) in O_34

These irreducible numbers factor as ideals:

50 g6 =pp’ (4+3)0 35 =p" (4—3))0_3 = (p')%

(6 —31)O_z6 + (4 + 31)O_zs;

p
"= (64 31)O_gg + (4 — 31)O_ss.

p

To understand arithmetic of Op, study its nonprincipal ideals.

Avoid noninvertible ideals, such as 30_35 + 3i0_36.
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Class groups and class humbers

Definition

The ring class group of Op is

_ {invertible fractional ideals of Op}

i) = {principal fractional ideals aOp}

@ |CI(Op)| =1 if and only if Op has unique factorization of
numbers coprime to the conductor f.
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Narrow ring class group

The narrow ring class group of Op is

" _{invertible fractional ideals of Op}
CI"(Op) = {aOp with Nm(«) > 0}

Theorem (Gauss, Dirichlet, Dedekind)

ClIt(Op) = Q;“rim(D)/SLg(Z).

E|
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Class field theory

Another interpretation of Q. (D)/SLy(Z): Galois group.

prim

What are the abelian extensions of K?

@ If p is a prime ideal of Op, then p ramifies in an extension
of K if p is divisible by the square of a prime ideal in the
extension.

Theorem (part of Artin Reciprocity)

Art : CI(Op) = Gal(H} /K),

where Hj is the maximal abelian extension of Q(v/D) that is
unramified at every prime ideal of Op.
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Representing primes

Let ¢ be the isomorphism from Q. (D)/ SLa(Z) to CI*(Op).

Corollary of Artin reciprocity and Gauss composition

Let p be a rational prime with ged(p, D) =1, Q € Qpnm( )-
TFAE:

(1) Q(m,n) = pforsome m,nc Z.
(2) ¢(Q) = [p] in CI"(Op), where (p) = pp’ in Op.
(3) Art(¢(Q)) = Frob, in Gal (H} /K), where (p) = pp’ in Op.
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Ray class groups

@ Ring class fields do not generate all abelian extensions of
a number field.

@ To describe the Galois groups of all finite abelian
extensions, we need ray class groups.

Definition (K and Lagarias for nonmaximal orders)

Let m be an ideal of Op and S C {real embeddings K — R}.

Cly, 5(Op) = {invertible fractional ideals of Op coprime to m}
SR {aOp with & =1 (mod m) and p(a) > 0 for p € S}

Theorem (Artin Reciprocity + K and Lagarias)

There is an abelian extension HB’S of K (uniquely specified by
certain conditions on splitting of primes) with an isomorphism

Art : Cly, s(Op) = Gal(HS/K).

1



Gauss composition for ray class groups
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Narrow ray class groups

Let 0o, 00p be the real embeddings of K = Q(v/D).

Definition
The narrow ray class group of Op modulo (m, S) is

CIH(Op) = {invertiblg fractional ideals of O coprime to m}.
m {aOp with a =1 (mod m) and Nm(«) > 0}
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Field theoretic interpretation
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Refined Gauss composition

b? —4ac = D, gcd(a,N) = ged(a, b, c) =1,
and Q is not negative-definite

F1(N):{(: 3>€SL2(Z):(: 3)5(8 ;") (modN)}.

Q(x,y) = ax®> + bxy + cy?: a,b,c € 7,
prlm(D)

Theorem 1 (Beckwith and K, 2021+)

There is a bijection ¢ : Qpnm(D)/ﬂ( ) X CI{N)((’)D).
prlm(D)/r1( ) has an abelian group structure.

Known for Op, with fundamental discriminant Dy < 0 by Eum,
Koo, and Shin in 2017.
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Mapping forms to ideals

Q(x,y) = ax® + bxy + cy? = a(x — 7y)(x — 7'y)

with - = =2+VD_ Define the twisting factor:

A _ {aOp:a=1 (mod N),Nm(a) <0} ifD>0anda<0,
Q= idy if D<0ora>0,

Define ¢(Q) = Rqla(Z + 7Z)] .
One must then check that...

@ a(Z+ 7Z)is coprime to N

@ a(Z + 77) is invertible,

@ ¢(Q") ~ $(Q) in Cliyy(Op) for v € T1(N),
@ [Q] — [#(Q)] is injective and surjective.
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Representation of primes

Theorem 2 (Beckwith and K, 2021+)

Let p be a rational prime, and suppose gcd(p, ND) = 1. Fix a

binary quadratic form Q Qg;;(D). The following are

equivalent:

(1) Q(m,n) = pfor some (m,n) = (1,0) (mod N).

(2) &(Q) =[p]in CIZLN)(D), where (p) = pp’ for distinct prime
ideals p and p’ in Op.

(3) Art(4(Q)) = Frob, in Gal(HS2" /K), where (p) = pyp’ for

(N)
distinct prime ideals p, p’ in Op .
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Example

D=—7,0p=7Z[*"], N =3.

CIF (0_7) 2 Z/4Z.

© p=Q(m.n):
(m,n) = (1,0) (mod 3)
Xy + 2)7 67, 79, 127, 163, 277, 373, 421,
463 ...
[2x% + 3xy + 2)?]

2,11, 23,29, 53,71, 107, 113, 137,
149,179, 191, 197, 233, 239, 263,
281, 317, 347, 359, 389, 401, 431,
443, 449, 491 ...

[4xZ + 5xy + 2] 7,37, 43,109, 151, 193, 211, 331,
337, 379, 457, 487, 499 . ..

[2x2 — 3xy + 2y?]

D0)
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Example

D=21,0p=7[*¥&], N=6.

Clg (O21) = Z/6L.

& p = Q(m,n):
(m,n) = (1,0) (mod 6)
21 5xy 1 ¥ 7,67, 211, 421, 457, 487 ...
O+ 5xy + V7)) 89, 101, 131, 173, 227, 257, 467,
563, 587, ...
[-5x% + xy + ¥

37, 43, 79, 109, 127, 151, 163,
198, 277, 331, 337, 373, 379, 463,
499, 541, 547, 571 ...

5,17,41,47,59, 83, 167, 251, 269,
293, 311, 353, 383, 419, 461,479,
503, 509, 521, 593 ...

TS

5% — Xy + Y2

[—(=5x% + xy + y?)]
[—(—5x% — xy + y?)]
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Example

D =12, 0p = Z[V3], N = 5.
Cig (Z[\/§]> > 7,/27. x 7,J47.

Q] p = Q(m,n):

(m,n) = (1,0) (mod 5)
[x? — 3y?] 61,181, 241 ...
[—x2 + 3y?] 59,179,239, 359 ...
[3x% — y?] 3,23,83,263,383 . ..
[—-3x% + y?] 37,97, 157, 227,397, ...

[11x% — 34xy + 26)y?]

11,71,131, 191, 251, 311, ...

[—11x% 4 34xy — 26y2]

109, 229, 349, ...

[2x% — 2xy — y?]

2,47,107,167, 227, 347 . ..

[—2X2 + 2xy + y?]

13,73,193, 313,373 ...




Twisted traces of biharmonic Maass forms
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As an application of our results on refined Gauss composition
(and other tools), we prove a formula for the leading coefficients
of Hecke L-series for real quadratic fields as a “twisted trace" of
biharmonic Maass forms.

Our motivation comes from explicit class field theory.
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Class field theory

Let K/Q be a number field.

What are the finite abelian extensions of K?

Class field theory

The finite abelian extensions of K correspond to quotients of
the ray class groups for K.

Is there an explicit description of these extensions?
L
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Explicit class field theory

Kronecker-Weber Theorem

Every finite abelian extension of Q is contained in Q(&2™'/") for
some n.

Hilbert’s Twelfth Problem

Find an analogue of the Kronecker-Weber theorem for number
fields other than Q.

| A

In other words, find an explicit description of the finite abelian
extensions of K, where K is a number field.

N
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Kronecker’s Jugendtraum

Let K = Q(v/D), where D < 0.

Ok = 7Z + 77 for some 7 € H.
Let j(z) : H — C be the modular j-function,

j(7) = €72 4 744 + 196884627 + 214937606 + - . - .

Theorem (Kronecker)
The maximal unramified abelian extension of K is K(j(7)).

All finite abelian extensions of K are contained in
K(j(7), p(T, 2)), where g is the Weierstrass g function, an
elliptic function, and z € C/(Z + 7Z) is a torsion point.




Twisted traces of biharmonic Maass forms
L]
Real quadratic fields

Can we construct abelian extensions of real quadratic fields
using a similar method?

j(a+ bv/D) is undefined for D > 0.
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Overview of cycle integrals

Take the average of a modular function (such as j) along a
geodesic path.

@ Seems like a reasonable candidate for a real quadratic
analogues of singular moduli

@ Related (as we'll see) to coefficients of harmonic Maass
forms

@ ..but cycle integrals of the j-function seem to be
transcendental. Maybe try other modular functions?

TS
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Definition of cycle integrals

-15 -1.0 -05 '

Let Q(x, y) = ax® + bxy + cy?, disc(Q) > 0.

0.5

Sog={r€H:alr|? + bRe(r) + ¢ =0}.

Write stabs),(z)(Sq) = (9a), W € Sq, Cq a path from w to gow.
The cycle integral of f : SLo(Z)\H — C for Q is

az
/Co f(Z)Q(z,1)'
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Twisted races of cycle integrals

For a holomorphic modular function f, let

Tty = Y @ [ A g

1

for a character y on Q. (D)/SLy(Z).

prim

Theorem (Duke, Imamoglu, and Téth, 2011)

For x a genus character, the values Trp(j, x) are coefficients of
a weight 1/2 mock modular form.
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Generalization of Duke-Imamoglu-Téth

Theorem (Matsusaka, 2018)

Traces of polyharmonic modular functions are coefficients of
the holomorphic part of half integral weight polyharmonic weak
Maass forms.

The function f(z) = — log(y|n(7)|*) is a polyharmonic modular
function which appears in the Kronecker Limit formula.

The twisted traces of f(z) are coefficients of a polyharmonic
weak Maass form of weight 3.
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Kronecker limit formula

For Re(k +2s) > 2,

Ek(T, S) = Z ys

k —-2s°
(mmyezaooy (M T MM 40

Theorem (Kronecker limit formula)

Forr ¢ H

Eo(r,5) = (o +2n(2y0 —log4 + log(yn(r)|*)) + O(s — 1)

for s in a neighborhood of 1. Here ~ is Euler’s constant.

Note: For a fixed imaginary quadratic irrationality 7 € H, the
function Ey(r, s) is a partial ideal class zeta function for Z[r].
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Kronecker limit formula for positive discriminants

Theorem (Hecke)

Let D > 0, A € CI(Q(vD)), and let {(s, A) = > ,ca Nm(a)~ for
Re(s) > 1.

—1/2
C(S,A)ZZD log € 2|oge( 1 )

1 4 dT
- 75 )., 8 (vIn(r)1#) eyt o=

Here € is a fundamental unit and Q depends on A.

Theorem 3 (Beckwith and K, 2021+)

We obtain a generalization where A is a ray class of K and the
Laurent coefficients are polyharmonic Maass forms for ['(N).
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Definition

Let I be a congruence subgroup of SLo(Z), and let r € %N. A
polyharmonic Maass form of weight k and depth r is a function

f: H — C such that
Q 1(&Z8) = (cr+ d)kf(r) forally € T.
@ 2j(f) =0,
where

92 92 0 0
=y S+ —iky|=—+i=—]).
A=Yy <8x2 + 8y2> " <8x +Iay)
© There exists ¢ € R such that f(x + iy) = O(y°) as y — oo,
and analogous conditions hold at the other cusps of I'.
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Remarks

@ For &, = 2iy"%, we have Ay = &o_k o &.

The definition makes sense for r = 5, 3. ... by interpreting

A,li as &.
@ Whenr = % these are holomorphic modular forms.
@ When r = 1, these are harmonic Maass forms.
@ When r = 3/2, these are sesquiharmonic Maass forms.
@ When r = 2, these are biharmonic Maass forms.

@ We let V" denote the space of such functions.

e
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Theorem (Lagarias and Rhoades, 2015)

Let I = SL»(Z). The space V,f’r is spanned by Si(I') and the
first r Taylor coefficients of Ex(r,s) at s = 0.

Example
Eo(r,8) =Y _ An(r)s".

n>0

Ao(r) € V32" = My(T).
Aq(r) e V2T
Ao(r) € Vg/?"
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Diagram

e

Let I = SLx(Z). For k > 2 and k = O:

/
B
g

27

V27k

E2—k
3/2,I
Vk
X

1,0

V2—k

&2k

V2T — Mi(SLa(Z))
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Generalizations

@ Other eigenvalues: Andersen, Lagarias, Rhoades
@ Polyharmonic weak Maass forms: Matsusaka
@ Half integral weight polyharmonic Maass forms: Matsusaka

@ Our work: polyharmonic Maass forms with respect to
F(N):={(25) eSLa(Z): (25) = ({9) (mod N).
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Offset Eisenstein series

Let g1, 92 € Q.

Ek

g1 7(72(7—’ S) =

> 4

(mayeze (M4 @7 + (0 + G2) 2 (M + qu)7 + (n+ g2))"

for Re(2s + k) > 2.
E(’;hqz have meromorphic continuation in the s-variable to C.
Laurent expansion:

(e.9]

k?‘ i - k
Z Byl o, (7)8 = E§ . (7,5).
j=—1
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Result on spaces of polyharmonic Maass forms

Theorem 4 (Beckwith and K, 2021+)

Let k be an integer not equal to 1. A basis for V;’F(N) is given in
terms of

{BI;J""Z(T):(a1732)€(Z/NZ)27—1 §j§r+1}
NN

For k=0, if g1 = go = }, then

BO,I’

(@
1/2,1/2(T) € Vi @,
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For k > 2:

V22—k,F(N)
&2k
Vo2
X)
V1’_F;EN)
&2k
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Diagram
For k = 0:
=
2,N(N 2T (N
% (N) Ve (N)
&
0
3/2,F(N 3/2,F(N
V2/ (N) Ve (N)
><) (N)
1,1 (N 1,r
V2 " Yo
%

VAT =y (r () vy /2N — mo(r(N))
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Hecke L-series

Definition

Let (N, D) = 1 and let x be a character of a ray class group
CIZFN)((’)D).
L(s,x) = Y x([a])Nm(a)®

CISOD

for Re(s) > 1 is the Hecke series for K with respect to .

@ Products of these L(s, x) are Dedekind zeta functions for
totally real abelian extensions of K.

@ The Stark conjectures predict that (in certain cases)
L"(0, x) is a quadratic form in logarithms of units of abelian
extensions of K.

AR
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Hecke L-series

Let ¢ : CI{,(Op) — O:N(D)/I1(N) be as in Theorem 1.

prim

Theorem 5 (Beckwith and K, 2021+)

If x factors through Cln(Op), then

L(s,x) = (; Aeczl;(o) X(A) B?vfo(T)gb(Af)’(TT’U) $2+0(s%).

@ The integrand is a biharmonic Maass form for I'1(N).

@ Proof idea: We use Hecke’s method to compute L(s, x) in
terms of offset Eisenstein series.
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Example

Consider K = Q(v/23), N = 5.
o CIF(K)=Z/12Z.
@ Let x be an order 3 Hecke character of conductor 50k.
@ This character defines a degree 3 abelian extension H, /K.
@ Gal(H,/Q) = Ss.

We can prove that L(s, x) = ¢u(s)/¢(s) for a non-Galois cubic
extension M = Q(«).

Here, o — 17a% + 63c+ 1 = 0 and M(v/23) = H,.

A
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Example

Combining the class number formula with our result,

2 (Iog(a) log(3) — log(—a) |°g(*ﬁl))
1 ar
=5 ZX(A/‘)/ B?}ZE),O(T)W’

j=0 Coy
where

o ~ 5.48872, o/ ~ —0.0158055 roots of x> — 17x2 + 63x +1 =0,
~1.16151, 3’ ~ —74.1731 roots of x* + 73x* — 87x +1 = 0.
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Thank you all for your attention!

Questions?

A7
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