Wannabe modularity, the
Shintani-Faddeev cocycle, and Stark units

Gene S. Kopp

Southern Regional Number Theory Conference
Louisiana State University
March 13, 2022




Special Thanks to NSA and NSF




The g-Pochhammer symbol
°
The g-Pochhammer symbol

The (infinite) g-Pochhammer symbol is

oo

(Wa q)oo = H(1 - qu)
k=0

Write w = e(2) = €27 and q = e(7) = €?™'", and set

w(z,7) = (W, Q)oo-

How does w(z, 7) transform under:
@ elliptic transformations z — z+ m7r + n?

i z ar+b \n
@ modular transformations (z, ) — (CT+U,, CT+d) ‘




The g-Pochhammer symbol
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The Jacobi triple product and theta functions

The Jacobi triple product says that

oo oo

[10 -0 - w51 -w g h = 3 wigt.

k=1 n=—oo

After a change of variables, the Jacobi triple product is equivalent to

the formula
. 19 )
wtenet-2) = () (4(3) () ey wer
n(r) = 6(2;4) ﬁ(1 —e(kr)) is the Dedekind eta function, and

k=1

191(2,7):—,75:0:(; (n+;>27+ <n+;) (z+;>>

is a Jacobi theta function.




The g-Pochhammer symbol
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The Jacobi triple product and theta functions

(2, ")w(—2,7) = fie(f%) (e(g) - e(fg>) f(z,7),
9

1(Z,T).

n(7)

@ The function f(z, 7) is a meromorphic Jacobi form of weight 0
with character—it transforms “nicely” under elliptic and modular
transformations.

@ w(z, ) is essentially “half” of a meromorphic Jacobi form—does
it have interesting transformation properties on its own?

where f(z,7) =




The g-Pochhammer symbol
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Elliptic transformations of w(z, 7)

f(z,7) = M2 (2, 7) = (e(2) , &(T))oo-

n(r)
f(z+1,7)=—f(z,7) w(z+1,7)=w(z,7)
f(z+77)= —e(—% _ z) f(z,7) w(z+77)=(1—e(2) 'w(z,7)

General elliptic transformation: For any m,n € Z,

f(z+mr+n,7)= (—1)m+"e<—n;27' — Z) f(z,7)

@(z+mr+n,7) = (e(2),e(7));, @(z,7)

B




The g-Pochhammer symbol
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Modular transformations of w(z, 1)

Transformations under T:
f(Z,T+1)_€(;> f(z,7) w(z,7+1)=w(z,7)

Transformations under S:




The g-Pochhammer symbol
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Modular transformations of «(z, 7), continued

Theorem (Shintani, 1977 (rephrased))

The modular transformation law for g-Pochhammer symbol under the
S-matrix is

(2D (R ) )

-Sina(z, 7)w(z, 7),

where Sina(z, 7) is the double sine function, a meromorphic function
ofzeCand 7 € C\ (—o0,0].

@ Shintani called this result a “Proposition”.

@ The term “double sine function” is due to Kurokawa. (Shintani
called the function F.)




The g-Pochhammer symbol
°
Double sine function

Shintani’s definition of Siny(z, 7) is in terms of functions previously
defined by Barnes. The double zeta function is

(o] o0
C2(8,Zw,wa) = Z Z(Z +wim+wen)~S.

m=0 n=0

The double gamma function is

o)

d
M2(2; w1, w2) = p2(w1,w2) exp ( £Cz(s7 Z; w1, w)

The double sine function is

Mo(w1 +wp — 2wy, wp)
M2(2; w1, w2)

Sing(Z; w1,w2) =

Because Sina(az; awy, awy) = Sina(z; wi,w2), we lose no generality
by defining Sinz(z, 7) = Sina(z; 7, 1).

Q




The g-Pochhammer symbol
o
History—number theory side

@ Shintani (1977) used his double sine function to give “Kronecker
limit formulas” for first derivatives at zero of partial zeta functions
attached to real quadratic number fields, as products of double
sine values.

@ Shintani also generalized to totally real fields.

@ Kurowawa and Koyama studied these functions further and found
other number-theoretic applications.

@ Zagier, Hayes, Sczech, Tangedal, Yamamoto, and others have
refined or reinterpreted Shintani’s formulas.

10



The g-Pochhammer symbol
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History—physics side

@ Meanwhile, Faddeev (1994) independently discovered the
double sine function and its relation to the g-Pochhammer
symbol. He called it the noncompact quantum dilogarithm and
used it in conformal field theory.

@ The physics literature includes many fascinating and highly
nontrivial integral formulas involving the noncompact quantum
dilogarithm.

@ Recently, Sarkissian and Spiridonov (2020) considered a general
modular quantum dilogarithm.
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General modular transformations of w(z, 7)

Theorem (K 2022+, Sarkissian-Spiridonov 2020)

For each v = (25) € SL»(Z), there is a meromorphic function
oy(z,7)on C x (C\ {r e R: cr + d < 0}) with the property that

z ar+b
- Gy
ctr+d cr+d

) =o0,(z,T)w(z,7).

Definition (K 2022+)

We call the map v — o, (z, 7) the Shintani-Faddeev Jacobi cocycle.




Wannabe modularity
[ ]

Questions:
@ Inwhat sense is v — o.,(z, 7) a cocycle?
@ In what sense is w(z, 7) modular or Jacobi-form-like?

I’'m still trying to find the best answers to these questions—but | will
present my current working formalism.

KT ’™’™»HH>HSSSSS




Wannabe modularity
[ ]
Generalized group cohomology

Suppose I is a group and A is a Z[']-module. The first cohomology
group is

{a:T = Ala,,, =aza,}

H'(T, A
(F,4) = {a:T - A|a,=crc " forsome c e A}

Definition (K 2022+)

If we also have a function B : I — {subgroups of A}, we may define a
generalized first cohnomology group

a:r—-Ala,eB,a = ala
H1B(r7A) _ { | Y Y172 '72}

{a r—Ala,=cc'forsomece() B }




Wannabe modularity
o
Weight cocycles

Now let I' be a discrete subgroup of SL>(R).

Definition (K 2022+)

A system of domains is a collection of connected open sets
H C D, C CU {cc} indexed by v € I'. A weight cocycle (or
“generalized factor of automorphy”) is a collection of nonzero
meromorphic functions w, : D, — C such that

Wap(T) = Wo, (Y2 - T)Woy, (7).
In other words, w., defines a cohomology class
[w,] € Ha(T, M)

where Mp denotes the ring of meromorphic functions on D, and
B, = MEW.

1
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Wannabe modular forms

WANNABE

WFEFICIAL MUSIC VIDE®!
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Wannabe modular forms

Definition (K 2022+)

Let w, (7) be a weight cocycle for some system of domains D,. A
meromorphic complex-valued function f : H — C is wannabe modular

of weight w.,(7) if
F(y - 7) = wy(n)f(7)

for all 7 € H.

First example: For every k € Z, the function j,(7)k = (¢ + d)" is a
weight cocycle for the constant system of domains D, = C U {oo},
and any modular form of weight k is a wannabe modular form of
weight . (7).




Wannabe modularity
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The Shintani-Faddeev modular cocycle

Second example: For p = (p1,p2) € 1NZ X %Z, let
@p(7) = @(P17 + P2, 7) = (e(P17 + P2) (7))o

Theorem (K 2022+)

The function wp(7) is @ wannabe modular form for a congruence
subgroup of level N. The associated weight cocycle v — P (7), called
the Shintani-Faddeev modular cocycle (with characteristics p), is
valued in meromorphic functions v () on D,, where

_ C\ (—o0,—d/c] ifc>0,
D,=<¢ C ifc=0,

C\[-d/c,0) ifc<O.

IS ’™™™HHSSS




Wannabe modularity
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Wannabe Jacobi forms

We may define wannabe Jacobi forms in a similar manner (details
omitted).

Theorem (rephrasing of transformation laws)

The function w(z, 7) is a wannabe Jacobi form with weight cocycle
v+ o0,(z,7) and system of domains

C\ (—o0,—d/c] ifc>0,
C ifc=0and d > 0,
H ifc=0and d <0,
C\[-d/c,0) if c <O0.

D, =

1O




Stark conjectures
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Hilbert’s 12 problem and the Stark conjectures

@ Kronecker-Weber theorem says that the abelian Galois
extensions of Q are generated by the values of e(z) = €?™# at
rational values of z.

@ Hilbert’s 12th problem asks for an extension of Kronecker-Weber
where Q is replaced by a general number field K.

@ Given any K, Hilbert wanted analytic functions that play the role
of e(2).

@ Harold Stark conjectured in a series of papers (1971-1980) that
exp(cZ(1)), for certain linear combinations Z(s) of Hecke
L-functions of K, generate abelian extensions of K.
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L-functions at s = 1: rational example

The following formula can be proved using calculus. Try it!

1 1 1 1 1 1 1 1
e S T 1 2
"3 5T7Te i @ T 5log (1+2)
The left-hand side is the value L(1, x), where x(n) = (2) is the
Dirichlet character associated to the field extenS|on Q(v2)/Q. The

right-hand side involves = = 1 + /2, the fundamental unit of Q(v/2).




Stark conjectures
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L-functions at s = 1: imaginary quadratic example

The following formula is proved using the theory of complex
multiplication for elliptic curves.

ZZ e(m/5) — e(2m/5) _ 2m (51/5)

log
2 2
e m? +mn+ n V3

where ¢ = 29 4 121/5 + 2,/6(65 + 29+/5).

The left-hand side is a linear combination of Hecke L-values at s = 1
for Q(v/—3). The right-hand side involves an algebraic unit = in the
ray class field modulo (5) for Q(v/—3).

This example is related to the 5-torsion points of the CM elliptic curve
y? = x3 + 1. This elliptic curve has complex multiplication by

7 |: —1 +2\/j3:| .




Stark conjectures
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L-functions at s = 1: real quadratic example

The following formula is an open conjecture!

= e(4m/5)—e(m/5) «
Z Z 3m2 — n2 —?bg(é),
m=1 neZ

_§m§n<§m

where ¢ ~ 3.890861714 is a root of the polynomial equation
x® — (8 +5v3)x” + (53 + 30v/3)x® — (156 + 90v/3)x°
+ (225 + 130v/3)x* — (156 + 90v/3)x® + (53 + 30V/3)x2
—(8+5V3)x+1=0.

The number < is an algebraic unit in the ray class field of Q(v/3)
modulo 500,. This conjecture is part of the Stark conjectures.
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Ray class groups and ray class fields

Let K be a number field and Ok its ring of integers. Let m be a ideal
in Ok, and let X be a subset of the real embeddings of K.

Definition (Ray class group modulo m, Y)

Clo5(Ok) = {fractional ideals of O coprime to m}
m =K T a0k st a=1(mod m) and p(a) > O for p € X}

Class field theory associates to Cly, »(Ok) a ray class field Hy, x, an
abelian extension of K with Galois group Gal(Hy x/K) = Cly 5 (Ok).
Varying m and X, the ray class fields are cofinal among all abelian
extensions of K.




Stark conjectures
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Zeta functions associated to ray classes

Definition
For «7 € Cl,, »(Ok), the associated zeta function is

((s,9)=Y_ Nm(a)™.
GSOK
aca

Let R € Cly, 5 (Ok) be the ideal class

#% = {a0k :a= —1(mod m) and p(a) > 0forp e X}.

Definition
For o7 € Cl,, 5(Ok), the associated differenced zeta function is

Zw(8) = ((s, o) — (5, Z).




Stark conjectures
°

Rank 1 abelian Stark conjecture over a real quadratic field

Conjecture (Stark, 1976, special case)

Setup:
@ Let K be a real quadratic number field.

@ Consider 0 # m < Ok with the property that, if e € O and
e =1 (mod m), then one of ¢ or —¢ is totally positive.

@ Let o7 be aray ideal class in Clyoo, (Ok).

@ Let Hy., be the ray class field of K modulo moo;.

@ Let p; be the real embedding of Hioo, 0, associated to oo;.
Then,
(1) Z/,(0) = log(p1(cr)) foraunit ey € Hioo,-

(2) The units ., are compatible with the isomorphism
Art : Clinoo, (Ok) — Gal(Hmoo,/K). Specifically, &, = £,A(),




F.lea\ multiplication values
Hilbert’s 12th problem and cocycles

@ Hilbert’s 12th problem was solved for imaginary quadratic fields
using complex multiplication values of modular functions
(0-cocycles for congruence subgroups of SLo(Z)).

@ Hope: Use “real multiplication values” of 1-cocycles to solve
Hilbert’s 12th problem for real quadratic fields.

@ In fact, it's no longer just a hope: Darmon, Pozzi, and Vonk
(2021) prove algebraicity results for real multiplication values of
their p-adic Dedekind-Rademacher cocycle using the
groundbreaking work of Dasgupta and Kakde (2021) on the
Gross-Stark and Brumer-Stark conjectures.

@ But what about the complex (not p-adic) setting?
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Real multiplication values of a weight cocycle

@ Let w,(7) be a weight cocycle.
@ Consider a real quadratic number g.

@ Suppose « € I is the “positive” generator for the stabilizer of 3 in
r.

@ Then, the values w, (/) is the real multiplication value of w at 5.




Real multiplication values
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Real multiplication values of vP(7)

Theorem (K 2022+)

Let K be a real quadratic field, N € N. Let .« € ClI(Ok), choose some
b € o7~ coprime to NOk, and write b = Z + 7 for some 3 € K. Let
v = (25) be the positive generator for stab(3) in [(N). Let 5y € Ok
such that 8 = By (mod N). For p = (p1, p2) € (Z/NZ)?, let

op = {aOk : o = p1 + p2 (mod N) and pa(a) > 0} € €|N002(OK)~
For an easily computable integer n (= 1 if 5Ok + NOk = Ok),

nexp(Zjs, (0, 67" %))

— (e (M (b~ (@ Dprpe o) wﬁ"’w))z.

v
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Proof outline

@ Use Jacobi triple product and modular properties of ¢1(z, ) and
n(7) to establish a relation between &P (7) and wP(7).

@ Write Tangedal’s version of Shintani’s formula (involving the
Hirzebruch-Jung continued fraction of ) in terms of the
Shintani-Faddeev cocycle, and use the cocycle condition to
“telescope” the product.

@ One is left with a complicated-looking root of unity factor...

@ ...that may be simplified greatly using the combinatorics of
continued fraction expansions and the relation between w?(3)
and w_P() previously established.

@ The maximal order Ok may also be replaced by an arbitrary
order O.
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Future directions

@ Big picture: Want to prove an algebraicity result for P (3).

@ Work out (conjecturally, at least) the action of the Artin map on
the sign under the square root.

@ Understand cohomology group containing v ~ @R (7), that is,
HL(T(N), M) with B, = M (or a smaller group, if this turns
out to be too big).

@ Connect complex and p-adic cocycles.

@ Try to do something with formulas and perspectives originating in
conformal field theory literature. Connect CFT to CFT?
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Thank you!

Thank you for listening! Any questions?
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