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Overview anc Counting SICs Fields generated by SICs

This talk will discuss:
@ Background on SICs and related objects

@ Results/conjectures of K and Lagarias [2024] on counting SICs
and fields generated by SICs

@ Results/conjectures of Appleby, Flammia, and K [2024+] on
ghostly constructions giving a conjectural construction of SICs in
every dimension (among other things)




SICs and
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Complex equiangular lines

You can draw three equiangular lines through the origin in R2:

Definition
Afinite set S = {Cvy,...,Cv,} C PY~'(C) with || vj||=1is
equiangular if (v, vk)| := |V - vk| = a for j # k.

In terms of the Hermitian projections onto the lines, equiangularity
means Tr(M;MNx) = o? for j # k.

Is it possible to find more than three equiangular lines in C2?




SICs and

Complex eqmangular lines

Yes! Take S = {[1 L S [ ) [ 1]}.

Proposition (Delsarte, Goethals, and Seidel; 1975)

Consider a set S ¢ P9~1(C) of n equiangular lines of common angle
arccos(a). Then, n < d?. If n = d?, then a = \/J?.
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Definition (SIC)
A SIC (SIC-POVM; symmetric informationally-complete positive

operator-valued measure) isaset S = {I4,...,Mg} C Myxq(C) such

that:

(1) rll? = ;

(2) Tr(M;My) = g5 forj # k

(3) rkM; =1

@ nf=n

(We dispense with the normalization factor 13 for convenience.)

A SIC is equivalent to:
@ A maximal set of complex equiangular lines.
@ A maximal complex equiangular tight frame (ETF).
@ A minimal complex projective 2-design.
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If we generalize from equiangular lines to equichordal subspaces,
Delsarte, Goethals, and Seidel’s upper bound of d? still holds.

Definition (r-SIC)

Anr-SiICisasetS = {ly,...,Mg} C Myxq(C) such that:
(1) I‘I/? = I;

(2) Tr(MMe) = 291 for j # k

(3) rk |_|j =r

@ nf=n

An r-SIC is equivalent to a maximal ECTFF (equichordal tight fusion
frame). ECTFFs have also been called STFFs (symmetric tight fusion
frames).




SICs and r-SICs

Weak Zauner’s Conjecture

Conjecture (Zauner 1999)

There is at least one SIC in every dimension d > 1.

SICs are known from exact solutions in dimensions 1-53 and many
other dimensions as large as d = 1299.

Numerical (probable) SICs are known in dimension 1-193 and
various higher dimensions. Most exact and numerical solutions have
been found by Grassl and Scott.

By studying known SICs, people (starting with Zauner) have
formulated increasingly more precise refinements of this conjecture.
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Let( = &% and ¢ = —e¥. The Weyl-Heisenberg group (associated
to Z/dZ) is the finite unitary matrix group

WH(d) = {¢kXP1 ZP2 - k, py, po € Z}, Where

00 -~ 0 1 1.0 0 0
10 .- 00 0 ¢ O 0
x—|l01 .00 2_]l00 ¢ 0
00 -~ 10 00 0 ... (91

A special set of coset representatives for WH(d) modulo its center is

Dp = §P1P2XP1 7Pz

for p = (p1, p2) € (Z/dZ)>.
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Strong Zauner’s Conjecture

Conjecture (Zauner 1999)

There is at least one SIC S in every dimension d > 1 satisfying the
following properties:
(1) S is Weyl-Heisenberg covariant (a.k.a., a WH-SIC):

S = {Dp 'MDp} pc (zazy2 Tor some fiducial projector .

(2) UZ_alI'IUZau = [ for the order three unitary Zauner matrix with
entries

1 d—1 2k{+(d+1)¢?
(UZau)kg: < ( ) >

Va\ g od

Here, e(z) = €%,

All but one of the known SICs satisfy (1) (up to unitary equivalence).
Some WH-SICs do not satsfy (2).
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Geometric equivalence of r-SICs

An r-SIC remains an r-SIC after a unitary “rotation” or an anti-unitary
“reflection”—forming the extended unitary group EU(d).

We consider two r-SICs {I;} and {I}} to be geometrically equivalent
if there is some U € EU(d) such that U~'M;U = M.

Proposition

WH-r-SICs with fiducial projectors N and " are geometrically
equivalent if and only if U='NU = N’ for some U € EC(d), where

EC(d) = {U € EU(d) : U"THU € WH(d) for all H € WH(d)}

is a finite group.

Definition

The EC(d)-orbit of a WH-r-SIC is [S] := {U~'SU : U € EC(d)}.
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SICs and r-SICs

A known infinite family of r-SICs

Unlike 1-SICs, r-SICs are known to exist in arbitrarily large dimension.

Proposition (Appleby, Bengtsson, Flammia, and Goyeneche

2019; Construction of Wigner 2£'-SICs)
For any d € N, the matrices

I'Ii = %(/:I: UP) with UP =

are fiducial projectors for WH-r-SICs of rank r = %.

As with SICs in dimension d = 3, there is expected to be a
continuous family of WH-2£1-SICs, with the Wigner MEFF
generalizing the Hasse SIC.




@ [Appleby, Yadsan-Appleby, Zauner 2012] Galois groups of known
SICs are solvable; conjectures about Galois group structure

@ [Appleby, Flammia, McConnell, Yard 2016] SIC fields are often
ray class fields of real quadratic field Q(\/(d + 1)(d — 3))

@ [Kthesis 2017] Connected SIC in d = 5 to Stark units; some
conjectures about counting SICs

@ [K 2019] Conjectural construction of SICs from Stark units in
prime dimension d = 5 (mod 6)

@ [Appleby, Bengtsson, Grassl, Harrison, McConnell 2021]
Conjectural construction of SICs from Stark units, prime
d=n’+3

@ [Bengtsson, Grassl, McConnell 2024] Conjectural construction of
SICs from Stark units, d = 4p = n® + 3, p prime




Class groups of binary quadratic forms

Let A = 0,1 (mod 4) be a nonsquare integer.

Q(A) :={Q(x,y) = ax® + bxy + cy? : b — dac = A}.
Qprim(A) :={Q(x,y) € Q(A) : gcd(a, b,c) = 1}.

If A = fPA, for Ag a fundamental discriminant, then

Q(A) — |_| {;Q(X,y) Qe Qprim((f/)zA)} :

f\f
The group GL(Z) acts on Q(A) and Qyim(A) by the twisted action
(Qla)(x,y) = (det A) Q(ax + By, X + 6y)

for A= (: f;) € GLo(2).

1




Counting SICs

Theorem (Gauss 1801)

The set of equivalence class of the group action

Cl(Oa) := Qpim(A)/ GL2(Z)

is a finite set. Moreover, it has the structure of a group with operation
[@Q1] * [Q=] = [Qs] defined uniquely by the condition
Qs(X, Y) = Q4 (x1,y1)02(x2,y2) for some
X = pXxiy1 + QX1 Yo + ry1 Xo + Sy1Xo,
Y =p'xiy1+qXx1y2 +'yixe + s'yi1 Xz,

with p,q,r,s,p'.q',r', s € Z.

On non-primitive forms, Gauss composition defines a monoid

CIm(O4a) := Q(A)/ GLo(Z) «— | |CU(Orryen,)-
f/|f




Counting SICs

Counting SICs

Conjecture (K 2017)
Fix d # 3, and let A = (d + 1)(d — 3).Then,

[WH-SIC(d)/ EC(d)| = [CIm(Oa)l,

where Cim(Oa) = Q(A)/ GLo(Z) is the set of twisted GL,(Z)-classes
of binary quadratic forms of discriminant A.

This conjecture has been verified for d < 90, assuming Scott and
Grassl’s tables of SICs are complete (K and Lagarias 2024).

The quantity |CIm(Oa)| is also the number of GL2(Z)-conjugacy
classes of elements of SL»(Z) of trace d — 1. (This formulation
removes A from the picture.)

IS >SS



Counting SICs

Number of SICs in dimension d

The size of the class monoid |CIm(Oa)| is a sum of class numbers,
whose sizes can be estimated from values of L-functions.

We know |CIm(Oa)| — oo as d — oo. In particular...

Theorem (Byeon, Kim, and Lee 2007)

For A = (d+1)(d — 3), |CIm(Oa)| = 1 if and only if
de{1,2,4,5,6,10,22).

So there should be more than one SIC in every dimension d > 22.

Theorem (K and Lagarias 2024)

For A =(d+1)(d—3), as d — o,

log |CIm(Oa)| = log(d) + o(log(d))

The above result is proven using the Brauer—Siegel theorem, with an
ineffective implicit constant.

S



Counting SICs

Number of SICs in dimension d

Plot by Steven Flammia; assumes conjectures.
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Counting SICs

Galois multiplets of SICs

Let 0. : C — C denote complex conjugation o.(z) = Z. Consider the
centralizer

Cone/a)(7) = { € Gal(C/Q) : (V2 € €) 0(2) = o(2)}

Lemma (easy)

If S ={My,...,Ng}is an r-SIC and ¢ € Cgay(c/g)(oc), then
o(8) = {o(M),...,o(MNz)} is a r-SIC.

Definition
The multiplet of a SIC S is the set of EC(d)-orbits

(S]] = {[0 )] : 0 € Caa C/Q)(Uc)}

(It is a finite set if and only if S is algebraic.)

| \

A
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Overview Counting SICs

Counting SICs by multiplets

Conjecture (K 2017; K and Lagarias 2024)

Letd #3and A = (d + 1)(d — 3), and write A = f2Aq. Then there is
a bijection (not explicitly constructed)

#{pos. divisors of f} — #{[[S]] : S d-dim’| WH-SIC}
= [[Se]]-

The size of each multiplet is

#[[Sr]] = # Cl(O(ry2n,)-

v

This conjecture has been verified for d < 90, assuming that Scott and
Grassl’s tables are complete.

1O



ounting Fields generated by SICs
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Definition of fields generated eral SICs (makes sense for

“The field generated by a SIC” or “the SIC field” has been used in
several inequivalent ways in the literature.

Here are two associated to S = {[My,...,Mg}:
@ projector SIC field:

FPei(S) := Q((Mk)j : 1 < k < 2,1 <i,j<d).
@ triple product SIC field:

Fmp(s) = Q(Tr(l_lk1|_|k2|_|k3) 1 < k17k25 k3 < d2)

Proposition

If one defined the unitary invariant SIC field to be
FinV(S) = Q(TI’(Hk1 cee ﬂkm) 1< Kky,...,kpn < dz),

then F™(S) = FUi(S).




Proof of F™

The {IM,} form a basis for My(C), so there are “structure constants”

nk2 Zak1k2|—|g

Taking traces div. by r, 3, af, , = %596, 4, + %=1, Moreover,

Tr(rlk1 nkznka) = Z a£1k2Tr(n€ﬂk3)

ar dr(d+r)(dr 1) (dr71)2
d+1ak1k2+ @17 Okik &=

Now, solve (2) for the structure constants ak %, in terms of the triple
products. Note that you can use (1) repeatedly to express
Tr(Mg, - --Mk,) as a polynomial of the structure constants.

(1)

()

O

<




Hilbert’s 12th problem and explicit class field theory

Hilbert’s 12th problem asks for an explicit construction of abelian
Galois extensions of number fields using special values of
transcendental functions, preferable with a geometric interpretation.

The abelian extensions of Q are cyclotomic fields—generated by the
values of e(z) = €™ at rational numbers.

Those of an imaginary quadratic field K are generated by “complex
multiplication (CM) values” of modular functions.

Both have geometric interpretations: Torsion points on the unit circle
(for Q) and on a CM elliptic curve (for K).

A geometric interpretation for abelian extensions of a real quadratic
field appears to come from SICs and r-SICs!




Class field theory (or orders of humber fields)

Consider a number field K and data (O; m, X) with
@ O asubring of K with abelian group structure Z!X*@ (an order),
@ m a nonzero ideal of O, and
@ Y a subset of the finite set of embeddings {K — R}.

Then one can abstractly define
@ a finite abelian group Cl,, x(O), the ray class group, and
@ a number field H“(ZZ, the ray class field, with
Gal(HS 5 /K 2 Cli £(0),

@ such that, fixing O and varying (m, X), every abelian extension of
K is contained in some H 5.

In the case of the maximal order, existence of the ray class field is
due to Takagi (1920). The non-maximal order case is due to K and
Lagarias (2022), building on class field theory.




Ray class fields for quadratic orders

The orders is the quadratic field Q(Ay) for a fundamental discrimiant
Ag are

Opp, = Z[fAO +2” AO] _ B0t VBo, 4

2
For A = (d +1)(d — 3) = f2Ay, we define some ray class fields of
interest for f'|f:
Edr = Hor foor 00y WIth O = O,
Eé’f/ = Hc(i?/O’,{oohooZ} with @’ = O(f’)2A07
where d' = d if dis odd and o’ = 2d if d is even.

Clearly E; ; = Eq ¢ if d is 0dd. One can show [E, [, : Eqr] =2if dis
even.




Fields generated by SICs
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Conjecture about fields generated by SICs

Conjecture (K and Lagarias 2024)

Fix d # 3, and let A = (d + 1)(d — 3) = f2A, with A a fundamental
discriminant. There is a bijective map (not explicitly constructed)

Q(A)/ GLa(Z) — WH-SIC(d)/ PEC(d)
[Q] — [Sa]

having the following properties:
e If Q(x,y) = £ (ax?+ bxy + cy?) with ged(a, b, ¢) = 1 and f'|f:

) Ftrip.(SQ) = Ed,f’y and
o F™i(Sg) = E}p.

@ The [[Sq,]] = [[Sq,]] if and only if the associated f{ = ;.




Fields generated by SICs

Numerical evidence on fields generated by SICs

d Ao f" ho [Egp:Kl [E),:K]| multiplet [F™(S):K] [FP(S):K]
4 5 1 1 4 8 4a 4 8
5 12 1 1 16 16 5a 16 16
6 21 1 1 12 24 6a 12 24
7 8 1 1 12 12 7b 12 12
2 1 24 24 7a 24 24
8 5 1 1 8 16 8b 8 16
3 1 32 64 8a 32 64
9 60 1 2 72 72 9ab 72 72
10 77 1 1 48 96 10a 48 96
1 24 1 1 80 80 11c * 80
2 2 160 160 11ab * 160
12 13 1 1 16 32 12b * 32
3 1 48 96 12a * 96
13 | 140 1 2 192 192 13ab * 192
14 | 165 1 2 144 288 14ab * 288
15 8 1 1 48 48 15d * 48
2 1 96 96 15b * 96
4 2 192 192 15ac * 192

Table from [K and Lagarias 2024]. Entries denoted by * have not been computed.
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Degeneration of SIC fields

Marcus Grassl observed (private communication, 2022) that, in
dimensions d € {47,67,259}, there are two multiplets generating the
same field FPei(S).

Theorem (K and Lagarias 2024)

We have Eqy » = Eq ¢ (equivalently Ej , = Ej ) for f|f" and f' # "
if and only if all of the following hold:
o " =2f,
@ f’is odd, and
@ sqfreepart((d + 1)(d — 3)) = 1 (mod 8).
The set of d for which this occurs has asymptotic density
{d < X : sqfreepart((d + 1)(d —3)) = 1 (mod 8)} 1

lim =

o’

Degen. for d € {47,67,83,175,211,259, 303, 339, 431,447,467, .. .}
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Ghost r-SICs

Definition (Ghost r-SICs)

A ghost r-SIC is a set {®1,...,Pp} C Myxq(C) such that:

(1) 02 =
(2) Tr(d;0x) = G forj # k
(3) rk q)j =r

4) o = Upod, (Parity-Hermitian) where
Ji /

10 0
0 o0 1
Up = Do I
o1 --- 0
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The Shintani-Faddeev modular cocycle

Theorem (K 2024+)

Letr=(r,r) € 172 and A= (j §> € SL»(Z) such that Ar —r € 72,
and (using the notation e(z) = €>7) let

o 1 fe((k+ rp)2t8 _ r1)

y7+96
1—e((k+nr)T—n)

oh(r) =]
k=0

for Re(7) > 0.

Then @', (7) meromorphically continues to

TelUY=C\{r€eR:y7+ <0},

with poles only at certain rational numbers.

N

Definition (K 2024+)
The map A — v',(7) is the Shintani-Faddeev modular cocycle.




Ghostly constructions
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Conjectural construction of ghost r-SICs and (“living”) r-SICs

Conjecture (Appleby, Flammia, and K 2024+)

Letd,r € Nwith0 < r < <! such that n = 2 (d )GZIet

A =n(n—4). Let Q(x, y) = ax? + bxy + cy? € Q(A), 8 a root of
Q(3,1)=0. Let B= ((’”’;’2)/2 o ,;fz)/Z), and take the smallest

positive power A = BX = /(mod d). For p € 7?/dZ?, set

r, if p1 =p2=0;
Vp = -1
P —vre(THR) vd P(9). eise,

with m(A, p) an explicit, easily computable integer.

<1>:1a > vepDpi G=(§9). Then,

pE(Z/dZ)?

(1) ¢ is afiducial projection of a WH covariant ghost r-SIC.
(2) 0 € Gal(C/Q), o(vVA) = —VA = o(®) afid. proj. of a WH-r-SIC.
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Comments on the conjectural construction

@ The conjecture accounts for all known SICs except those in
d = 3 and the Hoggar lines in d = 8.

@ The conjecture has been partially verified for all d < 50 and fully
verified for the four SICs in dimension d = 100 (of which only
one was previously known).

@ The ghost r-SIC construction (1) would follow from a (possibly
very difficult!) special value identity for 2" we call the Twisted
Convolution Conjecture.

@ The r-SIC construction (2) follows from the ghost construction
under the Stark conjectures or a mild refinement.

@ Look for Steven Flammia’s Julia package Zauner coming soon
to GitHub (as well as the preprints, coming soon to arXiv)
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Ghostly constructions
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Some parameters of r-SICs w

d r K d r K d r K
11 3  Q(/5) 109 10  Q(V6) 271 16 Q(V7)
19 4  Q(/3) 131 11 Q(V13) 305 17  Q(v285)
29 5 Q(v21) 139 24 Q(v21) 341 18  Q(v5)
8 Q(/5) 155 12 Q(v/35) 377 48  Q(V5)
41 6  Q(W2) 181 13  Q(V165) 379 19  Q(V357)
55 7  Q(V5) 199 55  Q(v5) 419 20  Q(V11)
71 8 Q(V/15) 209 14  Q(V3) 461 21 Q(V437)
15 Q(V3) 239 15 Q(v221) 505 22  Q(v/30)
76 21 Q(/5) 35  QWV2) 521 144  Q(V5)
89 9 QW77) 265 56 Q(V3) 551 23  Q(v21)

Table from draft of [Appleby, Flammia, and K 2024+]. Some rows are
aspirational; I've verified the ghost r-SIC construction works for d < 100.
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Thank you!

Thank you for listening! Any questions?
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