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This talk will discuss:

Background on SICs and related objects

Results/conjectures of K and Lagarias [2024] on counting SICs
and fields generated by SICs

Results/conjectures of Appleby, Flammia, and K [2024+] on
ghostly constructions giving a conjectural construction of SICs in
every dimension (among other things)
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Complex equiangular lines

You can draw three equiangular lines through the origin in R2:

Definition

A finite set S = {Cv1, . . . ,Cvn} ⊂ Pd−1(C) with ‖vj ‖= 1 is
equiangular if |〈vj , vk 〉| := |v j · vk | = α for j 6= k .

In terms of the Hermitian projections onto the lines, equiangularity
means Tr(Πj Πk ) = α2 for j 6= k .

Is it possible to find more than three equiangular lines in C2?
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Complex equiangular lines

Yes! Take S =
{

[1 : 1+i
1+
√

3
], [1 : −1−i

1+
√

3
], [ 1+i

1+
√

3
: 1], [ −1−i

1+
√

3
: 1]
}

.

Proposition (Delsarte, Goethals, and Seidel; 1975)

Consider a set S ⊂ Pd−1(C) of n equiangular lines of common angle
arccos(α). Then, n ≤ d2. If n = d2, then α = 1√

d+1
.
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SICs

Definition (SIC)

A SIC (SIC-POVM; symmetric informationally-complete positive
operator-valued measure) is a set S = {Π1, . . . ,Πd2} ⊂ Md×d (C) such
that:
(1) Π2

j = Πj

(2) Tr(Πj Πk ) = 1
d+1 for j 6= k

(3) rk Πj = 1

(4) Π†j = Πj

(We dispense with the normalization factor 1
d for convenience.)

A SIC is equivalent to:
A maximal set of complex equiangular lines.
A maximal complex equiangular tight frame (ETF).
A minimal complex projective 2-design.
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r -SICs

If we generalize from equiangular lines to equichordal subspaces,
Delsarte, Goethals, and Seidel’s upper bound of d2 still holds.

Definition (r -SIC)

An r -SIC is a set S = {Π1, . . . ,Πd2} ⊂ Md×d (C) such that:
(1) Π2

j = Πj

(2) Tr(Πj Πk ) = r(dr−1)
d2−1 for j 6= k

(3) rk Πj = r

(4) Π†j = Πj

An r -SIC is equivalent to a maximal ECTFF (equichordal tight fusion
frame). ECTFFs have also been called STFFs (symmetric tight fusion
frames).
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Weak Zauner’s Conjecture

Conjecture (Zauner 1999)

There is at least one SIC in every dimension d ≥ 1.

SICs are known from exact solutions in dimensions 1–53 and many
other dimensions as large as d = 1299.

Numerical (probable) SICs are known in dimension 1–193 and
various higher dimensions. Most exact and numerical solutions have
been found by Grassl and Scott.

By studying known SICs, people (starting with Zauner) have
formulated increasingly more precise refinements of this conjecture.
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The Weyl–Heisenberg group

Let ζ = e
2πi
d and ξ = −e

πi
d . The Weyl–Heisenberg group (associated

to Z/dZ) is the finite unitary matrix group

WH(d) = {ξk X p1Z p2 : k ,p1,p2 ∈ Z}, where

X =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 Z =


1 0 0 · · · 0
0 ζ 0 · · · 0
0 0 ζ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ζd−1

 .

A special set of coset representatives for WH(d) modulo its center is

Dp = ξp1p2X p1Z p2

for p = (p1,p2) ∈ (Z/dZ)2.
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Strong Zauner’s Conjecture

Conjecture (Zauner 1999)

There is at least one SIC S in every dimension d ≥ 1 satisfying the
following properties:
(1) S is Weyl–Heisenberg covariant (a.k.a., a WH-SIC):
S = {D−1

p ΠDp}p∈(Z/dZ)2 for some fiducial projector Π.

(2) U−1
ZauΠUZau = Π for the order three unitary Zauner matrix with

entries

(UZau)k` =
1√
d

e

(
d − 1

24
+

2k`+ (d + 1)`2

2d

)
.

Here, e(z) = e2πiz .

All but one of the known SICs satisfy (1) (up to unitary equivalence).
Some WH-SICs do not satsfy (2).
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Geometric equivalence of r -SICs

An r -SIC remains an r -SIC after a unitary “rotation” or an anti-unitary
“reflection”—forming the extended unitary group EU(d).

We consider two r -SICs {Πj} and {Π′j} to be geometrically equivalent
if there is some U ∈ EU(d) such that U−1ΠjU = Π′j .

Proposition

WH-r -SICs with fiducial projectors Π and Π′ are geometrically
equivalent if and only if U−1ΠU = Π′ for some U ∈ EC(d), where

EC(d) = {U ∈ EU(d) : U−1HU ∈WH(d) for all H ∈WH(d)}

is a finite group.

Definition

The EC(d)-orbit of a WH-r -SIC is [S] := {U−1SU : U ∈ EC(d)}.
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A known infinite family of r -SICs

Unlike 1-SICs, r -SICs are known to exist in arbitrarily large dimension.

Proposition (Appleby, Bengtsson, Flammia, and Goyeneche
2019; Construction of Wigner d±1

2 -SICs)

For any d ∈ N, the matrices

Π± =
1
2

(I ± UP) with UP =


1 0 · · · 0
0 0 · · · 1
...

... . .
. ...

0 1 · · · 0


are fiducial projectors for WH-r -SICs of rank r = d±1

2 .

As with SICs in dimension d = 3, there is expected to be a
continuous family of WH- d±1

2 -SICs, with the Wigner MEFF
generalizing the Hasse SIC.
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Past work on SICs and number theory

[Appleby, Yadsan-Appleby, Zauner 2012] Galois groups of known
SICs are solvable; conjectures about Galois group structure

[Appleby, Flammia, McConnell, Yard 2016] SIC fields are often
ray class fields of real quadratic field Q(

√
(d + 1)(d − 3))

[K thesis 2017] Connected SIC in d = 5 to Stark units; some
conjectures about counting SICs

[K 2019] Conjectural construction of SICs from Stark units in
prime dimension d ≡ 5 (mod 6)

[Appleby, Bengtsson, Grassl, Harrison, McConnell 2021]
Conjectural construction of SICs from Stark units, prime
d = n2 + 3

[Bengtsson, Grassl, McConnell 2024] Conjectural construction of
SICs from Stark units, d = 4p = n2 + 3, p prime
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Class groups of binary quadratic forms

Let ∆ ≡ 0,1 (mod 4) be a nonsquare integer.

Q(∆) := {Q(x , y) = ax2 + bxy + cy2 : b2 − 4ac = ∆}.
Qprim(∆) := {Q(x , y) ∈ Q(∆) : gcd(a,b, c) = 1}.

If ∆ = f 2∆0 for ∆0 a fundamental discriminant, then

Q(∆) =
⊔
f ′|f

{
f
f ′

Q(x , y) : Q ∈ Qprim((f ′)2∆)

}
.

The group GL2(Z) acts on Q(∆) and Qprim(∆) by the twisted action

(Q|A)(x , y) = (det A) Q(αx + βy , γx + δy)

for A =
(
α β
γ δ

)
∈ GL2(Z).
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Class groups of binary quadratic forms

Theorem (Gauss 1801)

The set of equivalence class of the group action

Cl(O∆) := Qprim(∆)/GL2(Z)

is a finite set. Moreover, it has the structure of a group with operation
[Q1] ∗ [Q2] = [Q3] defined uniquely by the condition

Q3(X ,Y ) = Q1(x1, y1)Q2(x2, y2) for some
X = px1y1 + qx1y2 + ry1x2 + sy1x2,

Y = p′x1y1 + q′x1y2 + r ′y1x2 + s′y1x2,

with p,q, r , s,p′,q′, r ′, s′ ∈ Z.

On non-primitive forms, Gauss composition defines a monoid

Clm(O∆) := Q(∆)/GL2(Z)←→
⊔
f ′|f

Cl(O(f ′)2∆0
).
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Counting SICs

Conjecture (K 2017)

Fix d 6= 3, and let ∆ = (d + 1)(d − 3).Then,

|WH-SIC(d)/EC(d)| = |Clm(O∆)| ,

where Clm(O∆) = Q(∆)/GL2(Z) is the set of twisted GL2(Z)-classes
of binary quadratic forms of discriminant ∆.

This conjecture has been verified for d ≤ 90, assuming Scott and
Grassl’s tables of SICs are complete (K and Lagarias 2024).

The quantity |Clm(O∆)| is also the number of GL2(Z)-conjugacy
classes of elements of SL2(Z) of trace d − 1. (This formulation
removes ∆ from the picture.)
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Number of SICs in dimension d

The size of the class monoid |Clm(O∆)| is a sum of class numbers,
whose sizes can be estimated from values of L-functions.

We know |Clm(O∆)| → ∞ as d →∞. In particular...

Theorem (Byeon, Kim, and Lee 2007)

For ∆ = (d + 1)(d − 3), |Clm(O∆)| = 1 if and only if
d ∈ {1,2,4,5,6,10,22}.

So there should be more than one SIC in every dimension d > 22.

Theorem (K and Lagarias 2024)

For ∆ = (d + 1)(d − 3), as d →∞,

log |Clm(O∆)| = log(d) + o(log(d))

The above result is proven using the Brauer–Siegel theorem, with an
ineffective implicit constant.
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Number of SICs in dimension d

Plot by Steven Flammia; assumes conjectures.
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Galois multiplets of SICs

Let σc : C→ C denote complex conjugation σc(z) = z. Consider the
centralizer

CGal(C/Q)(σc) =
{
σ ∈ Gal(C/Q) : (∀z ∈ C)σ(z) = σ(z)

}
.

Lemma (easy)

If S = {Π1, . . . ,Πd2} is an r -SIC and σ ∈ CGal(C/Q)(σc), then
σ(S) = {σ(Π1), . . . , σ(Πd2 )} is a r -SIC.

Definition
The multiplet of a SIC S is the set of EC(d)-orbits

[[S]] =
{

[σ(S)] : σ ∈ CGal(C/Q)(σc)
}
.

(It is a finite set if and only if S is algebraic.)
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Counting SICs by multiplets

Conjecture (K 2017; K and Lagarias 2024)

Let d 6= 3 and ∆ = (d + 1)(d − 3), and write ∆ = f 2∆0. Then there is
a bijection (not explicitly constructed)

#{pos. divisors of f} → #{[[S]] : S d-dim’l WH-SIC}
f ′ 7→ [[Sf ′ ]].

The size of each multiplet is

#[[Sf ′ ]] = # Cl(O(f ′)2∆0
).

This conjecture has been verified for d ≤ 90, assuming that Scott and
Grassl’s tables are complete.
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Definition of fields generated by general SICs (makes sense for r -SICs)

“The field generated by a SIC” or “the SIC field” has been used in
several inequivalent ways in the literature.

Here are two associated to S = {Π1, . . . ,Πd2}:
projector SIC field:

F proj(S) := Q((Πk )ij : 1 ≤ k ≤ d2,1 ≤ i , j ≤ d).

triple product SIC field:

F trip(S) := Q(Tr(Πk1 Πk2 Πk3 ) : 1 ≤ k1, k2, k3 ≤ d2).

Proposition

If one defined the unitary invariant SIC field to be

F inv(S) := Q(Tr(Πk1 · · ·Πkm ) : 1 ≤ k1, . . . , km ≤ d2),

then F inv(S) = F trip(S).
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Proof of F inv(S) = F trip(S) for r -SICs

Proof.
The {Πk} form a basis for Md (C), so there are “structure constants”

Πk1 Πk2 =
∑
`

α`k1k2
Π`. (1)

Taking traces div. by r ,
∑
` α

`
k1k2

= d2+dr
d2−1 δk1k2 + dr−1

d2−1 . Moreover,

Tr(Πk1 Πk2 Πk3 ) =
∑
`

α`k1k2
Tr(Π`Πk3 )

= dr
d+1α

k3
k1k2

+ dr(d+r)(dr−1)
(d2−1)2 δk1k2 + r(dr−1)2

d2−1 . (2)

Now, solve (2) for the structure constants αk3
k1k2

in terms of the triple
products. Note that you can use (1) repeatedly to express
Tr(Πk1 · · ·Πkm ) as a polynomial of the structure constants.

21



Overview SICs and r -SICs Counting SICs Fields generated by SICs Ghostly constructions

Hilbert’s 12th problem and explicit class field theory

Hilbert’s 12th problem asks for an explicit construction of abelian
Galois extensions of number fields using special values of
transcendental functions, preferable with a geometric interpretation.

The abelian extensions of Q are cyclotomic fields—generated by the
values of e(z) = e2πiz at rational numbers.

Those of an imaginary quadratic field K are generated by “complex
multiplication (CM) values” of modular functions.

Both have geometric interpretations: Torsion points on the unit circle
(for Q) and on a CM elliptic curve (for K ).

A geometric interpretation for abelian extensions of a real quadratic
field appears to come from SICs and r -SICs!
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Class field theory (or orders of number fields)

Consider a number field K and data (O;m,Σ) with
O a subring of K with abelian group structure Z[K :Q] (an order),
m a nonzero ideal of O, and
Σ a subset of the finite set of embeddings {K → R}.

Then one can abstractly define
a finite abelian group Clm,Σ(O), the ray class group, and
a number field HOm,Σ, the ray class field, with
Gal(HOm,Σ/K ∼= Clm,Σ(O),
such that, fixing O and varying (m,Σ), every abelian extension of
K is contained in some HOm,Σ.

In the case of the maximal order, existence of the ray class field is
due to Takagi (1920). The non-maximal order case is due to K and
Lagarias (2022), building on class field theory.
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Ray class fields for quadratic orders

The orders is the quadratic field Q(∆0) for a fundamental discrimiant
∆0 are

Of 2∆0
= Z

[
f

∆0 +
√

∆0

2

]
= f

∆0 +
√

∆0

2
Z + Z.

For ∆ = (d + 1)(d − 3) = f 2∆0, we define some ray class fields of
interest for f ′|f :

Ed,f ′ = HO
′

dO′,{∞1,∞2} with O′ = O(f ′)2∆0
,

E ′d,f ′ = HO
′

d ′O′,{∞1,∞2} with O′ = O(f ′)2∆0
,

where d ′ = d if d is odd and d ′ = 2d if d is even.

Clearly E ′d,f ′ = Ed,f ′ if d is odd. One can show [E ′d,f ′ : Ed,f ′ ] = 2 if d is
even.
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Conjecture about fields generated by SICs

Conjecture (K and Lagarias 2024)

Fix d 6= 3, and let ∆ = (d + 1)(d − 3) = f 2∆0 with ∆0 a fundamental
discriminant. There is a bijective map (not explicitly constructed)

Q(∆)/GL2(Z)→WH-SIC(d)/PEC(d)

[Q] 7→ [SQ]

having the following properties:
If Q(x , y) = f

f ′ (ax2 + bxy + cy2) with gcd(a,b, c) = 1 and f ′|f :
F trip(SQ) = Ed,f ′ , and
F proj(SQ) = E ′

d,f ′ .

The [[SQ1 ]] = [[SQ2 ]] if and only if the associated f ′1 = f ′2.
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Numerical evidence on fields generated by SICs

d ∆0 f ′ hO [Ed,f ′ :K ] [E′d,f ′ :K ] multiplet [F trip(S) :K ] [F proj(S) :K ]

4 5 1 1 4 8 4a 4 8
5 12 1 1 16 16 5a 16 16
6 21 1 1 12 24 6a 12 24
7 8 1 1 12 12 7b 12 12

2 1 24 24 7a 24 24
8 5 1 1 8 16 8b 8 16

3 1 32 64 8a 32 64
9 60 1 2 72 72 9ab 72 72

10 77 1 1 48 96 10a 48 96
11 24 1 1 80 80 11c ∗ 80

2 2 160 160 11ab ∗ 160
12 13 1 1 16 32 12b ∗ 32

3 1 48 96 12a ∗ 96
13 140 1 2 192 192 13ab ∗ 192
14 165 1 2 144 288 14ab ∗ 288
15 8 1 1 48 48 15d ∗ 48

2 1 96 96 15b ∗ 96
4 2 192 192 15ac ∗ 192

Table from [K and Lagarias 2024]. Entries denoted by ∗ have not been computed.
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Degeneration of SIC fields

Marcus Grassl observed (private communication, 2022) that, in
dimensions d ∈ {47,67,259}, there are two multiplets generating the
same field F proj(S).

Theorem (K and Lagarias 2024)

We have Ed,f ′ = Ed,f ′′ (equivalently E ′d,f ′ = E ′d,f ′′ ) for f ′|f ′′ and f ′ 6= f ′′

if and only if all of the following hold:
f ′′ = 2f ′,
f ′ is odd, and
sqfreepart((d + 1)(d − 3)) ≡ 1 (mod 8).

The set of d for which this occurs has asymptotic density

lim
X→∞

{d ≤ X : sqfreepart((d + 1)(d − 3)) ≡ 1 (mod 8)}
X

=
1
48
.

Degen. for d ∈ {47,67,83,175,211,259,303,339,431,447,467, . . .}
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Ghost r -SICs

Definition (Ghost r -SICs)

A ghost r -SIC is a set {Φ1, . . . ,Φd2} ⊂ Md×d (C) such that:
(1) Φ2

j = Φj

(2) Tr(Φj Φk ) = r(dr−1)
d2−1 for j 6= k

(3) rk Φj = r

(4) Φ†j = UPΦj (Parity-Hermitian) where

UP =


1 0 · · · 0
0 0 · · · 1
...

... . .
. ...

0 1 · · · 0


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The Shintani–Faddeev modular cocycle

Theorem (K 2024+)

Let r = (r1, r2) ∈ 1
d Z

2 and A =
(
α β
γ δ

)
∈ SL2(Z) such that Ar− r ∈ Z2,

and (using the notation e(z) = e2πiz) let

rש
A(τ) =

∞∏
k=0

1− e
(

(k + r2)ατ+β
γτ+δ − r1

)
1− e((k + r2)τ − r1)

for Re(τ) > 0.

Then rש
A(τ) meromorphically continues to

τ ∈ UA = C \ {τ ∈ R : γτ + δ ≤ 0},

with poles only at certain rational numbers.

Definition (K 2024+)

The map A 7→ rש
A(τ) is the Shintani–Faddeev modular cocycle.
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Conjectural construction of ghost r -SICs and (“living”) r -SICs

Conjecture (Appleby, Flammia, and K 2024+)

Let d , r ∈ N with 0 < r < d−1
2 such that n = d2−1

r(d−r) ∈ Z; let
∆ = n(n − 4). Let Q(x , y) = ax2 + bxy + cy2 ∈ Q(∆), β a root of
Q(β,1) = 0. Let B =

(
(−b+n−2)/2 −c

a (b−n+2)/2

)
, and take the smallest

positive power A = Bk ≡ I (mod d). For p ∈ Z2/dZ2, set

νp =

{
r , if p1 = p2 = 0;

− 1√
n e
(

m(A,p)
24d

)
d−1pש

A (β) , else,

with m(A,p) an explicit, easily computable integer.

Φ =
1
d

∑
p∈(Z/dZ)2

νGpDp; G =
(

r 0
0 1

)
. Then,

(1) Φ is a fiducial projection of a WH covariant ghost r -SIC.
(2) σ ∈ Gal(C/Q), σ(

√
∆) = −

√
∆⇒ σ(Φ) a fid. proj. of a WH-r -SIC.
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Comments on the conjectural construction

The conjecture accounts for all known SICs except those in
d = 3 and the Hoggar lines in d = 8.

The conjecture has been partially verified for all d ≤ 50 and fully
verified for the four SICs in dimension d = 100 (of which only
one was previously known).

The ghost r -SIC construction (1) would follow from a (possibly
very difficult!) special value identity for rש we call the Twisted
Convolution Conjecture.

The r -SIC construction (2) follows from the ghost construction
under the Stark conjectures or a mild refinement.

Look for Steven Flammia’s Julia package Zauner coming soon
to GitHub (as well as the preprints, coming soon to arXiv)

31



Overview SICs and r -SICs Counting SICs Fields generated by SICs Ghostly constructions

Some parameters of r -SICs with r > 1 (according to the conjecture)

d r K d r K d r K

11 3 Q(
√

5) 109 10 Q(
√

6) 271 16 Q(
√

7)
19 4 Q(

√
3) 131 11 Q(

√
13) 305 17 Q(

√
285)

29 5 Q(
√

21) 139 24 Q(
√

21) 341 18 Q(
√

5)
8 Q(

√
5) 155 12 Q(

√
35) 377 48 Q(

√
5)

41 6 Q(
√

2) 181 13 Q(
√

165) 379 19 Q(
√

357)
55 7 Q(

√
5) 199 55 Q(

√
5) 419 20 Q(

√
11)

71 8 Q(
√

15) 209 14 Q(
√

3) 461 21 Q(
√

437)
15 Q(

√
3) 239 15 Q(

√
221) 505 22 Q(

√
30)

76 21 Q(
√

5) 35 Q(
√

2) 521 144 Q(
√

5)
89 9 Q(

√
77) 265 56 Q(

√
3) 551 23 Q(

√
21)

Table from draft of [Appleby, Flammia, and K 2024+]. Some rows are
aspirational; I’ve verified the ghost r -SIC construction works for d ≤ 100.
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Thank you!

Thank you for listening! Any questions?
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