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quadratic fields

An order O in afield F is a subring such that
@ O has finite rank as an additive group, and
e QU =F.

Proposition

If O is an order in a quadratic field F with Ag = A, then

A+\/ZZ

O=Z+f 5

for some f € N.

The number f is called the conductor of O.




-generated ordel

nit-generated orders in quadratic fields

We call an order O unit-generated if it is generated as an abelian
group by O*.

If O is a unit-generated order in a quadratic field, then for some
n € Zxo, either
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Here, Nm(s/) = 1 and Nm(e,; ) = —1.

We will focus on (1) and set O, := Of and F, = Q(vVn? — 4) its
fraction field.




Every real quadratic field contains some O, = Z + ¢} Z.

@ f = conductor

@ j = height = number of times F, has appeared, and ¢} = (¢
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S are sparse

Q(v5), Q(V3), Q(v21), Q(v2), Q(v/5), Q(V15), Q(v77), Q(V6),
Q(V13), Q(V35), Q(v/165), Q(v/3), Q(v221), Q(v7), Q(V285),
Q(v5), Q(v357), Q(v11), ...

Repetitions occur when ¢/ = (s}n)f for j > 2, that is, when
n=Tr((ez,)) =: T} (m).

o O~ WN-
S
BN
|
I
3
Y
+
N




Philosophy of the unit ordering

@ A serious computation about a real quadratic field probably
involves computing the fundamental unit.

@ The unit ordering builds in the complexity of fundamental unit into
the parameter n.

@ Class number formula says

heloger =~ v/ Af.

In the unit ordering, the regulator is usually small, so the class
number is usually large.

@ Class numbers hg, should behave somewhat like class numbers
of imaginary quadratic fields.




Class monoids and class groups of orders

For any order O in a field K, the class monoid is

CIm(0) = {nonzero fractional ideals of O}
~ {nonzero principal fractional ideals of O}

The class group is

_ {nonzero invertible fractional ideals of O}
~ {nonzero principal fractional ideals of O} °

()

Example (Class monoid of Oy = Z[2/6])
x | () (3,2V6) (2,2V/6)

1) () (3,2v6) (2,2V6)
(3,2v6) | (3,2V6) (1) (2,2V6)
(2,2V6) | (2,2v6) (2,2V6) (2,2V6)




Class monoids and class groups of quadratic orders

If O is a quadratic order, there are canonical bijections between the
following sets.

(0) CIm(0O)
M | ] <o)
0’20
(2) GL2(Z)\{Q(x,y) = ax® + bxy + cy? : b? — 4ac = fPAg}
(3) If O = Oy, the set of GLx(Z) conj. classes in SLx(Z) of trace n.

There are compatible canonical bijections between
(1") Ci(0)

b? — 4ac = f°A
’ _ 2 2. F
(2) GLZ(Z)\{Q(x,y)_ax + bxy +cys: gcd(a, b, ¢) — 1 }

(3’) If O = Oy, the set of GL2(Z) conj. classes in SL,(Z) of trace n
that can’t be written as nontrivial perfect powers.




Unit-generated orders
o

Growth of class numbers of O,

Theorem (K and Lagarias 2024)

As n — oo,
log |CIm(©Oy)| = log |CI(O,)] + o( ogn_ ) = log n + o(log n).

loglog n

The implied constant in the O(&%) term is effective, but the
o(log n) term is ineffective.

I€im(©_n)| Image credit: S. T. Flammia
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Unit-generated orders
°

Proof sketch of growth of class numbers, part 1

Write O, = Z[f24Y2]. For each f'|f, there is a surjection
CU(Z[FA5E]) — CI(ZIF 252)).
Thus, |CI(On)| < [CIM(Op)| < ao(f) [CI(On)].

log f log n
Butlog 00(f) << rgig7 << Togiogn SO

log |CIm(On)| = log |CI(Op)] + o( log ) .

loglogn

1




of sketch of growth of class humbers, part 2

Let F = F,. There is an exact sequence

OF  (Op/fOF)*
15 £ 52 2, C(0,) = CI(OF) — 1.
0; " (Oaffop)r O = AOR)

Thus, we have

(OF/1OF)*
(On/fOF)*

o
orl

log |CI(Or)| = log |CI(OF)| + log

of
(@}

The term Iog’ = logj << logloge} << loglog nis negligible.




of sketch of growth of class humbers, part 3

The Brauer—Siegel Theorem says that (ineffectively)

log |CI(OF)| = § log A + loglog £ + 0(log A)

= llog A + O(log log n) + o(log A).

We also have, taking w = %,

(Or/fOF)*  ((Z + wZ)/(fZ + fwZ))"

(On/fOE)*  ((Z + fwZ)/(fZ + fwZ))*’

; (OF/tOR)*
from which we can show log ‘W
some care),

= log f + o(log f) Thus (with

log |[CI(OF)| = log Vf2A + O(log log n) + o(log A) + o(log f)
= log n+ o(log n),

using f2A = n? — 4,
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generated orders

Class num

The following theorem was previously a conjecture of Mollin.

Theorem (Byeon—Kim-Lee 2007)

Letn> 0, n+#2. If O, = OF,, then

ICI(O,)| =1 < ne{0,1,3,4,59,21}.

The following extension to nonmaximal orders has been verified
numerically for n < 108.

Conjecture (Kopp-Lagarias 2025)

Letn>0,n#2. Then

|C|(On)| =1 < ne {0?1737435763779311721}-




generated orders

s of negative norm

Contrast the unit ordering and the discriminant ordering.

Proposition (elementary)

The field F, has a unit of negative norm if and only if n = k2 + 2 or
n= T (ny) for some j >2and ny = k? + 2.

Theorem (Fouvrey—Kliiners 2010)

As X — oo,

¢ +o(1) - {fund. discs. 0 < A < X : Nm(eq(a)) = —1} _G+t o(1)
Vieg X {fund. discs. 0 < A < X} ~ Vg X

for explicit positive constants ¢, c,.




generated orders
0®

s of odd trace

Contrast the unit ordering and the discriminant ordering.

Proposition (elementary)

The field F, has a unit of odd trace if and only if nis odd or
n=T;(m) for some j > 2 and n; odd.

Theorem (Appleby—Flammia—K 2025 using Taniguchi—-Thorne
2013; special thanks to J. Wang)

2 - {fund. discs. 0 < A < X : Tr(eg(a)) is odd}

<
{fund. discs. 0 < A < X} -
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SIC-POVMs

Definition
A SIC or SIC-POVM (symmetric, informationally complete, positive

operator-valued measure) is (an set of quantum measurements
equivalent) to d? equiangular lines in C°.

| A\

Example (SIC for d = 2)
Vertecies of a regular tetrahedron in P'(C):

{[1 : 11++¢i§] ’ {1 | 1_1_%%] ’ {11++\/iﬁ : 1} ’ [1_1_[2 | 1”

A\




Unit-generated ¢

Zauner’s conjecture

Conjecture (Zauner 1999)
There is at least one SIC in every dimension d > 1.
@ Zauner also conjectured that SICs could be constructed with

certain symmetries related to a d-dimensional representation of
the (Weyl-)Heisenberg group WH(Z/dZ).

@ Weyl-Heisenberg SICs are known in dimensions 1-53 and many
other dimensions as large as d = 1299. Some involve algebraic
numbers of huge degree (> 10000).

@ Numerical (probable) SICs are known in dimension 1-193 and
various higher dimensions. Most exact and numerical solutions
have been found by Grassl and Scott.

@ SICs are only known to exist in finitely many dimensions.




Example (d = 5)

The unique SIC in dimension 5 is given by equiangular lines
{(CV1 s (CVQ, ceey (CV25},

for unit vectors v; whose inner products for i £ j are
1
<vi7v/> = %771/7

where [n;| = 1, and the 77;? are (up to multiplication by fifth roots of
unity) the roots of the polynomial

x® — (8 —5v3)x” + (53 — 30v/3)x® — (156 — 90V/3)x®
+ (225 — 130v/3)x* — (156 — 90v/3)x° + (53 — 30V/3)x?
—(8-5V3)x+1=0.

1




SICs from ideal classes

Conjecture (K 2017; K-Lagarias 2024; Appleby—Flammia-K 2025)
There is a bijection

Clm(O )g{ projective unitary equivalence classes of }
d—1

Weyl-Heisenberg SICs in dimension d

This bijection is described by an explicit formula using refined Stark
units produced by the Shintani—-Faddeev modular cocycle (see
A—F—K for details).

Under this bijection, the field of unitary invariants is a particular
generalized ray class field (an abelian extension of Fy_1)

F™ (([a])) = HSro, 005

with O’ = (a : a) = Z[f' 24/2] for some f'|f.

1O




An r-SIC (also called a maximal equichordal fusion frame) is a set
{M4,My,...,MNg} C Matyyq(C) satisfying

r if i =,
(1) Tr(N;Nj) = rc(;z::) it
(2) NZ =n;.
(3) i =n,.

An r-SIC is a set of rank-r Hermitian projections onto d?
“equiangular” (really, equichordal) subspaces of CC.

Can be thought of as an “optimal code” on the Grassmannian Gr,(C9)
with the chordal metric.




Unit-generated c

The dimension and rank grids

All solutions to the Diophantine equation

r(d—r) 1

21k

in positive integers (d, r, k) with 1 < r < 95 are given by...
(d7 r, k) = (df,fm Ij,m; k/)

Ej(m+1) — E_jm Ejm — E_jm

dm = =l +2+e7,

N
where ¢ = ¢/ is a totally positive fundamental unit for a real quadratic
field F. The grids of solutions for r and d indexed by (j, m) are called
the dimension grid and rank grid for F, respectively.




r-SICs
°

Example of dimension and rank grids

For F = Q(v/5) and ¢} = 355, we have:

48 2255 105937 4976784
dm= 19 341 6119 109 801

8 55 377 2584

4 11 29 76

47 2208 103729

[T G G G O

fjm = 18 323 5796
7 48 329
3 8 21




r-SICs from ideal classes

Conjecture (Appleby—Flammia—K 2025)

For each real quadratic field F and each pair of positive integers
(j, m), there is an injective map

CIm(Ok_2) o, projective unitary equivalence classes of
i Weyl-Heisenberg r; »-SICs in dimension dj m |

This bijection is described by an explicit formula using refined Stark
units produced by the Shintani—-Faddeev modular cocycle (see
A—F—K for details).

Under this map, the field of unitary invariants is a particular
generalized ray class field (an abelian extension of F)

F™(@([a]) = H o100,

with O’ = (a : a) = Z[f' 2/2] for some f'|f.

P REEEEEEETTSTSTSTSTSSSSSSEEEESEEEEE™™»HHHHSSSS



Implications for explicit class field theory over real quadratic fields

Theorem (Appleby—Flammia—K 2025)

Let F be a real quadratic field.

(1) If F has a unit of odd trace, then every abelian extension of F is
contained in one of the fields HY"

dj, moo1002”
(2) If F does not have a unit of odd trace, then every abelian

extension of F not ramified at 2 is contained in one of the fields
OF
dj, moo1002 "

Thus, conjecturally, unitary invariants of r-SICs generate all the
abelian extensions of a positive proportion of real quadratic fields.

As a long-term research goal, | hope to prove these conjectures and
develop the theory of r-SICs to a level on par with the theory of elliptic
curves with complex multiplication (which describes explicit class field
theory over imaginary quadratic fields).




Thank you!

Thank you for listening! Any questions?
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