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Abelian extensions of Q

Question
Fix K a number field. What are the abelian Galois extensions of K ?

Theorem (Kronecker–Weber)

For K = Q, every abelian Galois extension is contained in some
Q(ζn), where ζn is a primitive n-th root of 1.

Example (quadratic extensions of Q)
√

2 = ζ8 + ζ−1
8 , so Q(

√
2) ⊂ Q(ζ8).

√
−7 = 1 + 2ζ7 + 2ζ2

7 + 2ζ4
7 , so Q(

√
−7) ⊂ Q(ζ7).

Example (non-abelian extension of Q)

For all n ∈ N, 3
√

2 /∈ Q(ζn).
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Abelian extensions of an imaginary quadratic field, unramified case

Fix K an imaginary quadratic field of discriminant ∆.
Then OK = Z[ω] = Z + ωZ where ω = ∆+

√
∆

2 .

Theorem (Weber, Hilbert)

Let K ur be the maximal unramified abelian extension of K . Then
K ur/K is a finite extension of degree hK = |Cl(K )|, it is the minimal
extension such that there exists an elliptic curve

E = {y2 = x3 + ax + b} with a,b ∈ K ur and E(C) ∼= C/(Z + ωZ).

Example (Q( 1+
√
−7

2 )ur = Q( 1+
√
−7

2 ))

E(C) ∼= C/(Z + 1+
√
−7

2 Z) for E = {y2 = x3 − 140x − 784}.

Example (Q(
√
−6)ur = Q(

√
−3,
√

2))

E(C) ∼= C
Z+
√
−6Z for E = {y2 = x3 − 3(95 + 4

√
2)x + 46(7 + 17

√
2)}.
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Abelian extensions of an imaginary quadratic field, general case

Fix K an imaginary quadratic field of discriminant ∆.
Then OK = Z[ω] = Z + ωZ where ω = ∆+

√
∆

2 .

Theorem (Weber, others)

Consider the complex torus C/(Z + ωZ). Let Hm be the minimum field
extension of K such that there exists an elliptic curve

E with m-torsion points in Hm and E(C) ∼= C/(Z + ωZ).

Then any abelian extension of K is contained in some Hm.

Observation (Weber, Söhngen)

The above theorem remains true if C/(Z + ωZ) is replaced with
C/(Z + τZ) for any τ ∈ K . However, the Hm are replaced by larger
fields HOm depending on the multiplier ring

O = ord(Z + τZ) = {α ∈ K : α(Z + τZ) ⊆ Z + τZ}.
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Abelian extensions of an arbitrary number field

Class field theory (early 20th century work of Artin, Furtwängler,
Hasse, Hilbert, Takagi, Weber, ...) establishes, for any number field
K :

Ray class groups Clm,Σ(K ) defined as refined quotients of ideal
groups.
Ray class fields Hm,Σ having the properties:

Gal(Hm,Σ/K ) ∼= Clm,Σ(K ).
Hm,Σ may be specified using prime splitting conditions.
Every abelian extension of K is contained in some Hm,Σ.

These generalize the fields Hm in the imaginary quadratic case.

Remark
The ray class fields are not defined “explicitly” and are difficult to
calculate computationally.
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Class field theory for orders of an arbitrary number field

This talk (work of K and Lagarias) will present an approach to class
field theory based on more general class groups and class fields:

Ray class groups of orders Clm,Σ(O) defined as refined quotients
of invertible ideal groups.
Ray class fields HOm,Σ having the properties:

Gal(HO
m,Σ/K ) ∼= Clm,Σ(O).

HO
m,Σ may be specified using splitting conditions of prime ideals of
O.
Every abelian extension of K is contained in some HO

m,Σ.

These generalize the fields HOm in the imaginary quadratic case. The
approach complements an idélic approach to “ray class fields for
orders” by independent work of Campagna and Pengo (2021).
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Orders of number fields and fractional ideals

Definition
Let K be a number field. An order O ⊂ K is a subring for which

O has finite rank as a Z-module. (Excludes, e.g., Z[ 1
2 ] in Q.)

QO = K . (Excludes, e.g., Z in Q(i).)

The ring of integers OK is the maximal order. Examples of
nonmaximal orders include Z[

√
5] in Q(

√
5) and Z[3i] in Q(i).

Definition
A fractional ideal a of O is a finite rank O-submodule of K .
(Equivalently, some integer multiple na is in integral ideal of O.)

Any lattice Λ ⊂ K is a fractional ideal of its multiplier ring

ord(Λ) = {α ∈ K : αΛ ⊆ Λ}.
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Invertible fractional ideals

Let O be an order in a number field K .

Definition
The fractional ideal a is invertible if there exists another fractional
ideal b such that ab = O.

Example

2Z + 2iZ is not invertible as a Z[2i]-ideal but is invertible as a
Z[i]-ideal.

Example

q = 2Z + 2 3
√

2Z + 4 3
√

4 is an ideal of ord(q) = Z + 2 3
√

2Z + 2 3
√

4, but it
is not an invertible ideal of any order.
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Colons, conductors, and coprimality

Definition
For any two fractional ideals a, b of orders in K , the colon ideal is

(a : b) = {α ∈ K : αb ⊆ a}.
Special cases are the conductor ideal of an order f(O) = (O : OK )
and the multiplier ring of an ideal ord(a) = (a : a).

Definition

A fractional O-ideal c is coprime to an integral O-ideal m if c = ab−1

where b is invertible, a + m = O, and b + m = O.

Example

The fractional ideal c = iZ[2i] is not coprime to the conductor
f(Z[2i]) = 2Z[i] even though c2 = Z[2i].

Proposition

Fractional O-ideals coprime to f(O) are invertible.
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Ray class groups of orders

Let O be an order in a number field K . Fix
m an ideal of O;
Σ a subset of the real embeddings {ρ : K → R}.

Definition (K and Lagarias 2022)

The ray class group is defined as a quotient group

Clm,Σ(O) =
J∗m(O)

Pm,Σ(O)

where

J∗m(O) = {invertible fractional ideals of O coprime to m}, and

Pm,Σ(O) = {αO : α ∈ K×, α ≡ 1 (mod m), ρ(α) > 0 for all ρ ∈ Σ}.
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Change of modulus

We need to add further coprimality conditions to the definition of the
ray class group to allow us to

define maps between different ray class groups for the same
order, and
make the invertibility condition follow from the coprimality
condition.

Proposition (K and Lagarias 2022)

For any O-ideal d ⊆ m, the inclusion map J∗d(O) ⊆ J∗m(O) induces an
isomorphism

Clm,Σ(O) ∼=
J∗d(O)

Pd
m,Σ(O)

where

J∗d(O) = {invertible fractional ideals of O coprime to d}, and

Pd
m,Σ(O) =

{
αO :

α ∈ K×, α ≡ 1 (mod m), ρ(α) > 0 for all ρ ∈ Σ,
and αO is coprime to d

}
.
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Change of order

We also need to define maps between class groups for different
orders. For O ⊆ O′, there are extension and contraction maps

ext : {O-ideals} → {O′-ideals} ext(a) = aO,
con : {O′-ideals} → {O-ideals} con(a′) = a ∩ O.

The main technical result about extension and contraction maps is
the following proposition.

Proposition

Let d be an integral O′-ideal with d ⊆ (O : O′). Then the extension
and contraction maps extend uniquely to isomorphisms

ext : Jd(O)→ Jd(O′),
con : Jd(O′)→ Jd(O).

This is technically tricky because con is not a homomorphism on
ideals not coprime to (O : O′).
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Change of modulus and order exact sequence

Theorem (K and Lagarias 2022)

Let m be an ideal of O, m′ an ideal of O′ such that mO′ ⊆ m′, and
Σ′ ⊆ Σ ⊆ {embeddings K ↪→ R}. Let d be any O′-ideal such that
d ⊆ (m : O′). Let r = |Σ \ Σ′|. We have the following exact sequence.

1→ Um′,Σ′(O′)
Um,Σ(O)

→ Um′(O′/d)

Um(O/d)
×{±1}r → Clm,Σ(O)→ Clm′,Σ′(O′)→ 1.

Here, the “U-groups” are subgroups on unit groups defined by

UI,Σ(R) := {α ∈ R× : α ≡ 1 (mod I) and ρ(α) > 0 for ρ ∈ Σ}.

This theorem allows us to
understand the kernel of the “extension and change of modulus
map” between different ray class groups of orders;
construct new maps (needed for class field construction);
compute the sizes of ray class groups of orders.
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Construction of class field of orders

A surjective map from ψ : Cl(m:OK ),Σ(OK )→ Clm,Σ(O) is induced by
the following diagram (and may also be described more explicitly
using the contraction map).

Then the Takagi existence theorem and Artin reciprocity (in standard
class field theory) and the Galois correspondence defines a
corresponding class field HOm,Σ as a subfield of H(m:OK ),Σ.
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Theorem 1

The following theorem describes the ray class field of an order in
terms of the splitting of primes.

Theorem (K and Lagarias 2022)

The field HOm,Σ is the unique abelian Galois extension of K with the
property that:

a prime ideal p of OK that
is coprime to (m : OK )
splits completely in HOm,Σ

⇐⇒
p ∩ O = πO, a principal
prime O-ideal such that π ≡
1 (mod m) and ρ(π) > 0 for
ρ ∈ Σ.
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Theorem 2

The following theorem relates the ray class field of an order to ray
class fields of a larger order (such as the maximal order).

Theorem (K and Lagarias 2022)

For any order O′ ⊇ O, there are inclusions of ray class fields

HO
′

mO′,Σ ⊆ HOm,Σ ⊆ HO
′

(m:O′),Σ.

In particular, for O′ = OK ,

HmOK ,Σ ⊆ HOm,Σ ⊆ H(m:OK ),Σ.
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Theorem 3

The following theorem is a generalization of the Artin reciprocity law
to ray class fields of orders.

Theorem (K and Lagarias 2022)

Let H0 = HOm,Σ and H1 = H(m:OK ),Σ. There is an isomorphism

ArtO : Clm,Σ(O)→ Gal(H0/K ),

uniquely determined by the condition on prime ideals

ArtO([p])(α) ≡ αp (mod P)

where P is any prime of OH0 lying over pOK . Moreover, for any ideal a
coprime to f(O) ∩m,

ArtO([a]) = Art([aOK ])|H0
,

where Art : Cl(m:OK ),Σ(OK )→ Gal(H1/K ) is the usual Artin map of
class field theory.
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Explicit class field theory, overview

Hilbert’s 12th Problem asks for analytic functions whose special
values generate the abelian extensions of a number field F .

We really want:
(1) analytic functions
(2) a geometric explanation

Stark’s conjecture provides a partial answer to (1) via L-functions. We
still don’t know much about (2).

I won’t talk about:
CM abelian varieties in dim > 1
p-adic solutions (Gross–Stark and Brumer–Stark conjectures;
work of Dasgupta, Kakde, Silliman, Ventullo, Wang; work of
Darmon, Pozzi, Vonk)
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Explicit class field theory, analytic approach

field F analytic function values generating HOmO,Σ

Q exp
( 2πi

m

)
imaginary
quadratic

complex multiplication values of modular
functions (e.g., the Klein j-function and We-
ber’s functions/modular units) of level m

real
quadratic

conjecturally, stable (RM) values r[β]ש of the
level m Shintani–Faddeev modular cocycle
[K 2024+; see also Stark 1976, Shintani
1977, Kurokawa 1991, Sczech 1993, ...]

complex
cubic

conjecturally, at least for O = OF , stable val-
ues of a cocycle related to the elliptic gamma
function [Bergeron, Charollois, García 2023]
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Spotlight: The Shintani–Faddeev modular cocycle

Let r =
( r1

r2

)
∈ Q2 and A =

(
a b
c d

)
∈ Γr = {A ∈ SL2(Z) : Ar− r ∈ Z2}.

For Im(τ) > 0, define

rש
A(τ) =

∞∏
k=0

1− e
(

(k + r2) aτ+b
cτ+d − r1

)
1− e((k + r2)τ − r1)

, where e(z) := e2πiz .

Theorem (Dimofte 2015; K 2024+)

The function rש
A(τ) meromorphically continues (with some poles in Q)

to UA = C \ {τ ∈ R : cτ + d ≤ 0}.

Theorem (K 2024+)

Suppose β is real quadratic and aβ+b
cβ+d = β. Assuming the Stark

conjectures, if O = ord(βZ + Z) and r ∈ 1
mZ2, then

(explicit 12m-th root of unity)(שr
A(β))2 ∈ HOmO,{∞2}.
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Explicit class field theory, algebraic/geometric approach

field F geometric object producing HOmO,Σ

Q m-torsion points on the unit circle

imaginary
quadratic

m-torsion points on elliptic curve E with E(C) ∼=
C/O

real
quadratic

conjecturally (for a restricted set of m), certain
equichordal configurations of m2 subspaces in
Cm [Appleby, Flammia, K 2024+]

complex
cubic

???
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Spotlight: Sample of Appleby–Flammia–K construction

Let F = Q(
√

5) and ϕ = 1+
√

5
2 .

HZ[ϕ]
(4)∞1∞2

= HZ[ϕ]
4Z[ϕ],{∞1,∞2} is generated by the unitary invariants

of 16 equaiangular lines in C4.

HZ[ϕ]
(8)∞1∞2

and HZ[2ϕ]
(8)∞1∞2

are generated by the unitary invariants of
two different configurations of 64 equaiangular lines in C8.

HZ[ϕ]
(11)∞1∞2

is generated by the unitary invariants of 121
equichordal 3-dimensional subspaces in C11.

Assuming the Stark conjectures and a (probably very difficult!)
special value identity for rש

A(τ), a cofinal set of class fields are
obtained similarly.
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Other potential applications

Complex multiplication of abelian varieties (non-Gorenstein
orders cause difficulties; talk to Pete Clark)

(Higher) composition laws (and arithmetic statistics)

Modular-eque q-series
∑
O cOq±disc(O) built from ray class data

over some family of orders (Beckwith and K work in progress)

Lattice-based cryptography (some existing schemes use
non-maximal orders)

Computational algebraic number theory
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Thank you!

Thank you for listening! Any questions?
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