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Explicit ¢

belian extensions of Q

Fix K a number field. What are the abelian Galois extensions of K?

Theorem (Kronecker—Weber)

For K = Q, every abelian Galois extension is contained in some
Q(¢n), where ¢, is a primitive n-th root of 1.

Example (quadratic extensions of Q)

V2 =( ¢, 0 Q(v2) € Q(¢s)
V=7 =142 +2¢2 +2¢3, s0 Q(V=7) C Q(¢&).

Example (non-abelian extension of Q)
Forall ne N, V2 ¢ Q(¢n).




Introduction

belian extensions of an imaginary quadratic field, unramified case

Fix K an imaginary quadratic field of discriminant A.
Then Ok = Z[w] = Z + wZ where w = %.

Theorem (Weber, Hilbert)

Let K be the maximal unramified abelian extension of K. Then
K" /K is a finite extension of degree hx = |CI(K)|, it is the minimal
extension such that there exists an elliptic curve

E = {y? = x® 4 ax + b} with a,b € K" and E(C) = C/(Z + wZ).

Example (Q(124=7)" = Q(1£T))
E(C) = C/(Z + ==17) for E = {y? = x® — 140x — 784}.

A\

Example (Q(v/—6)" = Q(v/-3, v2))

E(C) = 55— for E = {y® = x* - 3(95 + 4V2)x + 46(7 + 17V2)}.

v




Explicit ¢

belian extensions of an imaginary quadratic field, general case

Fix K an imaginary quadratic field of discriminant A.
Then O = Z[w] = Z + wZ where w = A58

Theorem (Weber, others)

Consider the complex torus C/(Z + wZ). Let Hy, be the minimum field
extension of K such that there exists an elliptic curve

E with m-torsion points in H,, and E(C) = C/(Z + wZ).
Then any abelian extension of K is contained in some Hj,.

Observation (Weber, S6hngen)

The above theorem remains true if C/(Z + wZ) is replaced with
C/(Z + 77) for any T € K. However, the Hy, are replaced by larger
fields HS depending on the multiplier ring

O=od(Z+7Z)={acK:a(Z+72) CZ+TL}.




belian extensions of an arbitrary number field

Class field theory (early 20th century work of Artin, Furtwéangler,
Hasse, Hilbert, Takagi, Weber, ...) establishes, for any number field
K:
@ Ray class groups Cly, x(K) defined as refined quotients of ideal
groups.
@ Ray class fields H,, y having the properties:
0 Gal(Hwmx/K) = Cln 5 (K).
@ H, > may be specified using prime splitting conditions.
o Every abelian extension of K is contained in some Hi, x.
These generalize the fields Hp, in the imaginary quadratic case.

The ray class fields are not defined “explicitly” and are difficult to
calculate computationally.




Class field theory for orders of an arbitrary number field

This talk (work of K and Lagarias) will present an approach to class
field theory based on more general class groups and class fields:
@ Ray class groups of orders Cl,, 5 (O) defined as refined quotients
of invertible ideal groups.
@ Ray class fields HS, ; having the properties:
o Gal(Hg z/K) = Clu s (O).
° Hﬁz may be specified using splitting conditions of prime ideals of
0.
e Every abelian extension of K is contained in some H, 5.
These generalize the fields HS) in the imaginary quadratic case. The
approach complements an idélic approach to “ray class fields for
orders” by independent work of Campagna and Pengo (2021).




Class groups of orders Explicit ¢

ers of number ds and fractional ideals

Definition

Let K be a number field. An order O C K is a subring for which
@ O has finite rank as a Z-module. (Excludes, e.g., Z[%] in Q.)
® QO = K. (Excludes, e.g., Z in Q(/).)

The ring of integers Ok is the maximal order. Examples of
nonmaximal orders include Z[v/5] in Q(v/5) and Z[3/] in Q(/).

Definition

A fractional ideal a of O is a finite rank O-submodule of K.
(Equivalently, some integer multiple na is in integral ideal of O.)

Any lattice A C K is a fractional ideal of its multiplier ring

ord(A) = {a € K:aN C A}




Invertible fractional ideals

Let O be an order in a number field K.

Definition
The fractional ideal a is invertible if there exists another fractional
ideal b such that ab = O.

27 + 2iZ is not invertible as a Z[2/]-ideal but is invertible as a
Z|i]-ideal.

q =27 + 2V/2Z + 4v/4 is an ideal of ord(q) = Z + 2v/2Z + 2v/4, but it
is not an invertible ideal of any order.

A\




Introduction Class groups of orders

Colons, conductors, and coprimality

Definition
For any two fractional ideals a, b of orders in K, the colon ideal is
(a:0)={aeK:abCa}

Special cases are the conductor ideal of an order f(O) = (O : Ok)
and the multiplier ring of an ideal ord(a) = (a : a).

Definition

| A

A fractional O-ideal ¢ is coprime to an integral O-ideal m if ¢ = ab™"
where b is invertible, a + m = O, and b + m = O.

i \

The fractional ideal ¢ = i/Z[2/] is not coprime to the conductor
f(Z[2i]) = 2Z][i] even though ¢ = Z[2i].

Proposition

Fractional O-ideals coprime to f(O) are invertible.
Q




Class groups of orders
0008000

Ray class groups of orders

Let O be an order in a number field K. Fix
@ m an ideal of O;
@ Y a subset of the real embeddings {p : K — R}.

Definition (K and Lagarias 2022)
The ray class group is defined as a quotient group

Ja(0)
Clps(0) = =2
=(0) Pz ()
where
J:.(0) = {invertible fractional ideals of O coprime to m}, and

Pus(0)={a0:aec K*,a=1(mod m),p(a) > 0forall p € £}.

<
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Class groups of orders

Change of modulus

We need to add further coprimality conditions to the definition of the
ray class group to allow us to

@ define maps between different ray class groups for the same
order, and

@ make the invertibility condition follow from the coprimality
condition.

Proposition (K and Lagarias 2022)

For any O-ideal ® C m, the inclusion map J;(O) C J;,(O) induces an
isomorphism

Clo £(0) = szfgg)

where

J5(0) = {invertible fractional ideals of O coprime to 0}, and

N . - ae K*,a=1(mod m),p(a) >0forallp e X,
P 2(0) = {a(’) " and a0 is coprime to ? '

v




Class groups of orders C Explicit

We also need to define maps between class groups for different
orders. For O C (', there are extension and contraction maps

ext : {O-ideals} — {O’-ideals} ext(a) = a0,
con : {O'-ideals} — {O-ideals} con(a’) =anO.

The main technical result about extension and contraction maps is
the following proposition.

Proposition

Let 9 be an integral O’-ideal with @ C (O : O’). Then the extension
and contraction maps extend uniquely to isomorphisms

ext : Jo(0) — J,(O'),
con : Jo(0') = J,(0).

This is technically tricky because con is not a homomorphism on
ideals not coprime to (O : O’).




Class groups of orders ers Cit ¢ field theory

Change of modulus and order exact sequence

1

Theorem (K and Lagarias 2022)

Let m be an ideal of O, m’ an ideal of O’ such that mO0’ C w’, and
Y’ C ¥ C {embeddings K — R}. Let d be any O’'-ideal such that
0C (m: Q). Letr =|X\ ¥'|. We have the following exact sequence.
U 2 (O') , U (O'/0)
Um 5 (O) U (O/0)

Here, the “U-groups” are subgroups on unit groups defined by

1—

X{:l:1 }r — C|m7):(0) — C|m/’z/(0/) — 1.

Us(R) ={a e R*:a=1(mod /) and p(a) > 0 for p € }.

This theorem allows us to

@ understand the kernel of the “extension and change of modulus
map” between different ray class groups of orders;

@ construct new maps (needed for class field construction);
@ compute the sizes of ray class groups of orders.

I



Class fields of orders

Construction of class field of orders

A surjective map from ) : Clim.0,),5(Ok) — Cln £(0O) is induced by
the following diagram (and may also be described more explicitly
using the contraction map).

F o i — (Ox/ (m: 0x) X (21} — Clino,5(0x) — CI(Ox) — 1

Ok (O /(m:0k)) bl
l— 550 Orf O {£1}¥ ——— Clys(0) — Cl(Ox) — 1

Then the Takagi existence theorem and Artin reciprocity (in standard
class field theory) and the Galois correspondence defines a
corresponding class field H. Z as a subfield of Hm.0,),5-
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Theorem 1

The following theorem describes the ray class field of an order in
terms of the splitting of primes.

Theorem (K and Lagarias 2022)

The field HS, 5 is the unique abelian Galois extension of K with the
property that:

a prime ideal p of Ok that pNO = 70O, a principal
is coprime to (m:0k) <« prime O-ideal suchthatr =
splits completely in Hr(r?,): 1 (mod m) and p(w) > 0 for

pEL.




Class fields of orders

Theorem 2

The following theorem relates the ray class field of an order to ray
class fields of a larger order (such as the maximal order).

Theorem (K and Lagarias 2022)
For any order O’ 2 O, there are inclusions of ray class fields

o’ o o'
Huorx € Hux € Hnon s

In particular, for 0" = Ok,

o
Huoks € Hy s € Hm:ox) -

16




Introduc Dl oL orders ields of orders Explicit ¢

Theorem 3

The following theorem is a generalization of the Artin reciprocity law
to ray class fields of orders.

Theorem (K and Lagarias 2022)

Let Hy = HY + and Hy = Hm.0,).x. There is an isomorphism
m,> ( k),

Arto : C|m7):(0) = Ga|(H()/l()7
uniquely determined by the condition on prime ideals

Arto([p])(a) = aP (mod B)

where B is any prime of O, lying over pOk. Moreover, for any ideal a
coprime to f(O) Nm,

Arto([a]) = Art([aOk])ly, ,

where Art : Clim.0,),x(Ok) — Gal(H; /K) is the usual Artin map of
class field theory.




lass field theory

Explicit class field theory, overview

Hilbert’s 12th Problem asks for analytic functions whose special
values generate the abelian extensions of a number field F.

We really want:
(1) analytic functions
(2) a geometric explanation

Stark’s conjecture provides a partial answer to (1) via L-functions. We
still don’t know much about (2).

| won'’t talk about:
@ CM abelian varieties in dim > 1

@ p-adic solutions (Gross—Stark and Brumer—Stark conjectures;
work of Dasgupta, Kakde, Silliman, Ventullo, Wang; work of
Darmon, Pozzi, Vonk)

1



lass field theory

Explicit class field theory, analytic approach

field F analytic function values generating H3, s

Q exp (%)

imaginary complex multiplication values of modular

quadratic functions (e.g., the Klein j-function and We-
ber’s functions/modular units) of level m

real conjecturally, stable (RM) values @[] of the

quadratic level m Shintani—-Faddeev modular cocycle

[K 2024+; see also Stark 1976, Shintani
1977, Kurokawa 1991, Sczech 1993, ...]

complex conjecturally, at least for O = Op, stable val-
cubic ues of a cocycle related to the elliptic gamma
function [Bergeron, Charollois, Garcia 2023]

1O




icit class field theory

Spotlight: The Shintani-Faddeev modular cocycle

Letr=(7) €Q®and A= (25) e, ={AcSL(Z): Ar—r € Z?}.
For Im(7) > 0, define

o 1—e((k+r)Zh - n)
1—e((k+nr)r—n)

wh(7) = , where e(z) := >

k=0

Theorem (Dimofte 2015; K 2024+)

The function wy(7) meromorphically continues (with some poles in Q)
toUs=C\{reR:cr+d<0}.

| A\

Theorem (K 2024+)
ag+b __

Suppose 3 is real quadratic and ard = B Assuming the Stark
conjectures, if O = ord(BZ + Z) andr € 172, then

(explicit 12m-th root of unity)(wA(8))? € Hio (ses)-

o’

D0



lass field theory

Explicit class field theory, algebraic/geometric approach

field F geometric object producing H, 5

Q m-torsion points on the unit circle

imaginary m-torsion points on elliptic curve E with E(C) =

quadratic C/O

real conjecturally (for a restricted set of m), certain

quadratic equichordal configurations of m? subspaces in
C™ [Appleby, Flammia, K 2024+]

complex 2?77

cubic




lass field theory

Spotlight: Sample of Appleby—Flammia—K construction

Let F = Q(v/5) and ¢ = 145,

o H YL = Hyl (. s IS generated by the unitary invariants

of 16 equaiangular lines in C*.

° H(ZB[)“’;]O 100s and Hé[)zoﬂ o0, are generated by the unitary invariants of

two different configurations of 64 equaiangular lines in C8.

o HAl s generated by the unitary invariants of 121

(11)ooq00

equichordal 3-dimensional subspaces in C'".

@ Assuming the Stark conjectures and a (probably very difficult!)
special value identity for @} (7), a cofinal set of class fields are
obtained similarly.




lass field theory
[ 1s}

Other potential applications

@ Complex multiplication of abelian varieties (non-Gorenstein
orders cause difficulties; talk to Pete Clark)

@ (Higher) composition laws (and arithmetic statistics)

@ Modular-eque g-series ", coq*4(®) built from ray class data
over some family of orders (Beckwith and K work in progress)

@ Lattice-based cryptography (some existing schemes use
non-maximal orders)

@ Computational algebraic number theory




Explicit class field theory
.

Thank you!

Thank you for listening! Any questions?
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