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Background

L-functions at s = 1: example with base field Q

The following formula can be proved using calculus. Try it!

Example (Exercise)

1 1 1 A1 1 1 1 1
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@ The left-hand side is the value L(1, x), where x(n) = (2) is the
Dirichlet character associated to the field extension Q(v/2)/Q.

@ On the right-hand side is 1 + /2, the fundamental unit of Q(v/2).

@ This talk concerns higher analogs of this formula in the
framework of the Stark conjectures.
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ay class groups and ray class fields

Let F be a number field, m a nonzero ideal of Of, and ¥ be a subset
of the real embeddings of F.

Definition (Weber-Takagi—-Hasse 1897—1926)

The ray class group modulo (m, X) is

{fractional ideals of Of coprime to m}
{a0 s.t. a=1(mod m) and p(a) > 0forp e X}’

Clm,Z =

Class field theory associates to Cl,, s a ray class field Hy, 5, an
abelian extension of F with Galois group Gal(Hm x/F) = Cl 5.

Varying m and ¥, the ray class fields are cofinal among all abelian
extensions of F.
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Zeta functions associated to ray classes

Definition
For 2 € Cl, 5, the partial zeta function is
(mx(8,2A) = > Nm(a)~®.

aCO
acA

Let R € Cl,,, > be the ray ideal class

M ={a0:a=-1(mod m) and p(a) > 0 for p € X}.

Definition
For 2 € Cl, 5, the differenced partial zeta function is

Zm,}:(sa S21) = Cm,}:(sa 52() - Cm,Z(Sv E)C{QL)
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Eta and theta functions

The Dedekind eta function is

n(r) =e(5;) k]}m — e(kr)), where e(2) = €77 and 7 € H.

For A= (2%) € SLo(Z) and A- 7 = 2-£L it satisfies the modular
transformation law

n(A-7) = v (A Ver +d) Vor + dn(r).

The eta-multiplier character i) : Mp,(Z) — ({24) can be described
explicitly in terms of Jacobi symbols or Dedekind sums.
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Eta and theta functions

The Jacobi theta function with characteristics r = (1) € Q% is

be(r) =D e(3(n+r+3)Pr+(n+ 2+ 5= +3)).

For A= (25) €T, where
M ={AcSLy(Z): Ar —r € 7%},
the theta function satisfies the modular transformation law

O(A-7) = z/;(A, ver + d)SX,(A)\/CT T do(r)

for a particular character xr : SL2(Z) — (Con), with N = LCDI[n, r2].

F
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Kronecker second limit formula (applied to imaginary quadratic fields)

Theorem (Kronecker)

@ Let F be an imaginary quadratic number field.

@ Let m C Of be a nonzero ideal with m £ OFf.

@ Let2A € Cly, ¢ and 2Ag the class of 2L in Clp, ¢.

@ Choose b € 2, coprime to m.

@ Write bm = a(7Z + Z) for r € H.

@ Choose r = (1) € Q?such that (a(rar —r1))b~" € 2.
Then, for W = |OF| (so W = 2 for F # Q(v-3), Q(v—1)),

0(7)|"

eXp(_Ctln,@(()? 2l')) = 77(7_)

» Or(T)

Moreover, an integer power of the “CM value o]

in the ray class field H,, g over F.

is an “elliptic unit”
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Shintani limit formula and Stark conjecture

Theorem (Shintani 1977)

@ Let F be an real quadratic number field.
@ Let m C Of be a nonzero ideal with m # OF.
@ LetA € Cly {00y}
Then,
exp(er'n’{ocz}(O,Ql)> = X(2A)

where X (2() is an explicit finite (but arbitrarily long) product of special
values of the Barnes—Shintani double sine function.

Stark’s original conjecture in the rank 1 abelian real quadratic case
(1976) says that exp<fZ’ (o, m)) is an algebraic unit in Hy, (s, ).

m, {ooz}

Tate’s refinement (1981) includes the statement that
exp(J—Z’ (0,91)) is in an abelian extension of F.

2%m {002}
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Goals for this talk

We write the invariant X (2() appearing in Shintani’s formula as:
@ a limit from the upper half plane of a relatively simple infinite
product...

@ ...which can be interpreted as a real multiplication value of a
cocycle on Iy valued in complex meromorphic functions.




g-Pochhammer asymptotics

g-Pochhammer asymptotics near real quadratic points: example

oo

For q — eZTrI'T, set w(4(}5)(T) = (q4/5’ q)oo — H(-I _ qk+4/5).

k=0
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Figure: Graph of y = 'w( ) (\/5 +i e*6|og(2+\/§)t)
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g-Pochhammer asymptotics near real quadratic points: example

oo

For g = €™/, set w(435)(7) = (g*%, Q) = H(1 _ gkras),
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Figure: Graphs of y = ‘w'( ) (\/§ +i efelog(2+f3)r)
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and y — (2.35385)!
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g-Pochhammer asymptotics near real quadratic points: example
For g = €™/, set (%) (1) =(9*5,9) o = H(1 — gkt/s).
k=0
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Figure: Graph of y = -~ 2.35385e % .
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g-Pochhammer asymptotics near real quadratic points: example

1

oo

For g = €™/, set w(435)(T) = (G*/5,q)o0 = H(1 _ qk+4/5).
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Figure: Graph of y —arg (u*'W( ) (\fS +i e’6'°g(2+‘/§)‘)
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Interpreting the base of the exponential

i

What is the meaning of the number v ~ 2.35385¢~ 20 ?
@ The phase e~ % can be obtained up to +1 from the modularity of
(9%, 9)(G*°, 9)co-

@ Our main theorem implies that

—1

V17" = exp(— 32 (oeg} (0, 2)) = exp(—Cly oy} (0,20))

for a certain ray ideal class 2 € Cl(s5) o,}-

@ Assuming the Stark conjectures, \u\’z is an algebraic unit in an
abelian Galois extension of Q(+/3) (a “Stark unit”).

@ Tate’s refinement implies that Q() is also abelian over Q(+/3).
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Stark unit example

The number |u\2 ~ 5.54061 appears to be a root of the polynomial
equation

x® — (8 +5v3)x” + (53 + 30v/3)x® — (156 + 90v/3)x°
+ (225 + 130v/3)x* — (156 + 90v3)x® + (53 + 30V/3)x?
—(8+5V3)x+1=0.

This root is an algebraic unit in the ray class field H = Hs) (oc,}, With

Ga|(H/Q(f3)) >~ 7,/81.

The number |v| ~ 2.35385 appears to be an element of H(v/2).

1




The variant Pochhammer function with characteristics

Forre (1) € Q% 7 € H, and e(z) := €™, consider the function

oo

@r(r) = (e(rer — 1), e(r))o = [T (1 —e((k + )T — 1))

k=0

How does @ (7) transform under fractional linear transformations

a b\ _ar+b
c d) " er+d

for (25) € SLo(Z)?

16




Modularity?

@i(7) = (e(re — 1), ¢(7)) o = ﬁ (1 —e((k+r)r—n)).
In particular, taking g = e(r): -
@(0)(7) = (4 @)oo =q /#(r);
SO R R
=)0 = G AN

Up to polynomials in fractional powers of q,
(1) is weakly modular < r e 372

/2
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Connection to theta functions

Question: What happens for r ¢ 172?

Standard answer: We’re missing half the product to get a theta
function.

Theorem (Jacobi, rephrased)

The variant Pochhammer function with characteristics is related to the
theta function with characteristics by

TW\T )0 T) = (* er(T)
r( ) —r( ) 77(7_)

() =ie(= (F+4) 7 (-r+ ) C(25) —e(=252))

Proof sketch: This formula follows after a change of variables from
the Jacobi triple product identity.

I TS ”HH>SSSS
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Modular transformations of the variant Pochhammer function

Question: What happens for r ¢ 172?

Alternative answer: We can weaken our notion of modularity.

Theorem (as stated by K 2024)

Foreach A= (25) eIy, there is a meromorphic function v} (7) on
C\ {7 € R: cr + d < 0} with the property that

wr(A- 1) = U(7) (7).

Remark: Ideas and results of Shintani (1977), Arakawa (1982),
Faddeev (1994), Yamamoto (2010), Dimofte (2015), Sarkissian and
Spiridonov (2020), and Garoufalidis and Wheeler (2022) are closely
related to this theorem.

1O




hhammer modular properties

Modular tra rmations of the variant Pochhamer function, proof sketch

ForA=T=(}1), ore(T - 7) = e (7).

ForA=S= (?*01)...

Theorem (Shintani 1977, rephrased)

(@), ey g
-Sin2(2, 7) (e(2) ,&(7)) o

where Sina(z, 7) is the double sine function, a meromorphic function
ofzeCand 7 € C\ (—,0].

Thus, ws (S - 7) = s5(7)wr(7) for a meromorphic function sg(7) on
C\ (—o00,0].
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Modular transformations of the variant Pochhamer function, proof sketch

For general A € SL»(Z), decompose A as a product of Sand T
matrices.

Obtain a formula

war(A- 1) = SH(T)we(7);
some care is required in choosing the decomposition to obtain s/, (7)
meromorphicon C\ {r e R: ¢t + d < 0}.

Specializing to A € I, yields the theorem.
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The double sine function

Shintani’s definition of Sinz(z, ) is in terms of functions previously
defined by Barnes. The double zeta function is

C(S, Z wi,wa) = Z Z(z + wim+ wan)~%.

m=0 n=0

The double gamma function is

)

d
M2(Z; wi,w2) = pa(wi, w2) eXP<dsC2(37 Z;wy,w2)

The double sine function is

Mo(wy 4+ w2 — Z; w1, wp)
M2(z; wi,wa) '

Sing(z; wy, ws) =

Because Sina(az; awq, aws) = Sina(Z; wi,ws), we lose no generality
by defining Sinz(z, 7) = Sina(z; 7, 1).

-




Cohomological interpretation
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A working definition of a first cohomology group

@ X atopological space, X° an open subspace

@ F a sheaf of multiplicative groups of C-valued functions on X
@ [ a discrete group acting continuously on X

@ U = (Ua)acr a l-indexed open cover of X°

For AcT and f € F(V), define fA € F(A~"- V) by fA(x) = f(A- x).
Set

cy(r,F) =[] F(Ua);
Ael
ZY(T F) ={w € CY(T, F) : Wap, = Wy2Wa, };
Bl(T,F) = {w e C)(T,F) : wa= A" for some f € F(X°)};
Z)(T, F)

Hy(r, F) = 282
v Bi,(T, F)

P REEEEEEETSTSTSTSSSSSSEEEEEEEHHSHSSSSSSSSEh
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Cohomological interpretation and examples

Now suppose X = CU {oo}, X° = C, I < SL(Z), and F = M¢  the
sheaf of nonzero meromorphic functions with poles restricted to Q.

@ Forany I'and Us = C, and for A= (25), the function
ja(t) = c7 + d defines a cocycle j € Z/)(T, M o).

@ ForT =T, and Uy =C\ {7 € R: ja(7) < 0}, the function w}(7)
defines a cocycle v" € Zj(T', M{ ), which we call the
Shintani—-Faddeev modular cocycle.

@ We will see that these define nontrivial cohomology classes
[ [ € HY(T, M o).
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@ Let I be a finite-index subgroup of SL»(Z).
@ Let w = (Wa)acr € H\(T, M¢ g).
@ Consider a real quadratic number .

@ Let A €T be the “positive” generator for the stabilizer of gin T (or
inT/{£/}if =/ eT),with A- () =X (7) for A > 1.

@ If 5 € Up, call the value w[j3] := wa(5) the real multiplication
(RM) value of w at g.

@ The value w[5] depends only on § and the cohomology class
[w] € H(T, M o).
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RM values of the standard weight cocycle

Recall ja(t) = ¢t + d defines a modular cocycle for I' = SLx(Z).

Proposition (Exercise)
Let 8 be a real quadratic irrational and b = 8Z + Z. Let

O=((b:b)={acO:abCb}
be the multiplier ring of b (an order in Q(5)). Then
jIBl =5 € O

where ¢/, > 1 generates the totally positive part of O*.
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Main theorem: RM values of the Shintani-Faddeev modular cocycle

Theorem (K 2024)

@ Let F be an real quadratic number field.

@ Let m C Of be a nonzero ideal with m £ OF.

@ Let A € Cly (o0,} and 2Up the class of A in Clp, g.
@ Choose b € Ql51 coprime to m.

@ Write bm = a(8Z + Z), « totally positive, 8 > j3’.

@ Choose r = () € Q2 such that (a(r28 — r1))b~' € 2 and
B —r > 0.

@ Let n= 2 if Of has a positive unit that is —1 (mod m), and let
n =1 otherwise.

Then, treating the characters ¢ and x, as constant cocycles,

exp(=nZh 100, (0,2)) = (V2 xe (@) 2)[8].
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RM values of the Shintani-Faddeev modular cocycle: proof outline

@ Use Jacobi triple product and modularity of %%/ to establish an

elementary formula for w}(7) &, (7).

@ Write Tangedal’s version of Shintani’s formula (involving the
Hirzebruch—Jung continued fraction of 5) in terms of v}, and use
the cocycle condition to “telescope” the product.

@ One is left with a complicated-looking root of unity factor...

@ ...that may be simplified greatly using the combinatorics of
continued fraction expansions and properties of metaplectic
chracters.

Remark: Main theorem is a refinement not only of Shintani’s limit
formula but also of work of Arakawa (1982), Hayes (1990), Sczech
(1995), Tangadal (2007), Yamamoto (2010).
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RM values of the Shintani-Faddeev modular cocycle: example 1

Proposition (K 2024)

Forany A€ SLy(Z) and 7 € C\ {7 € R : ja(7) < 0},

or) = () w(A V) VAR

V.

Corollary (K 2024)

For 5 a real quadratic irrational, A be the positive generator for stab(/3)
inSLy(Z), and O = (BZ + Z : fZ + Z),

o8] = v (A Vi) /<5

\
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RM values of the Shintani-Faddeev modular cocycle: example 2

The following special value was computed to high precision and
repeats an example from earlier in the talk. Equality is conditional on
the Stark conjectures.

] () Lo
1526
where u =~ 5.54061 is a root of the polynomial equation
x® — (8 4+5v3)x” + (53 + 30V3)x® — (156 + 90V/3)x®
+ (225 4+ 130v/3)x* — (156 + 90v3)x® + (53 + 30V/3)x?
—(8+5V3)x+1=0.
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Some omissions from this presentation

@ Full main theorem handles arbitrary RM values of ", using partial
zeta functions of ray class monoids of nonmaximal orders.

@ Everything can rephrased in terms of RM values of the
Shintani—Faddeev Jacobi cocycle om a(z, ) for the Jacobi group
72 % SLy(7Z).

@ The first cohomology groups defined in this talk are the first
cohomology of a certain Cech-like complex of “I'-sheaves” after
taking sheaf-theoretic I'-invariants followed by global sections.
Precise relationship to equivariant conomology (if any) is TBD.

@ Precise relationships to Eichler cohomology and quantum
modularity are also TBD.
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Thank you!

Thank you for listening! Any questions?
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